<div class="csl-bib-body">
<div class="csl-entry">Gaglione, D., Soldi, G., Meyer, F., Hlawatsch, F., Braca, P., Farina, A., & Win, M. Z. (2020). Bayesian information fusion and multitarget tracking for maritime situational awareness. <i>IET Radar, Sonar and Navigation</i>, <i>14</i>(12), 1845–1857. https://doi.org/10.1049/iet-rsn.2019.0508</div>
</div>
-
dc.identifier.issn
1751-8784
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141219
-
dc.description.abstract
The goal of maritime situational awareness (MSA) is to provide a seamless wide-area operational picture of ship traffic in coastal areas and the oceans in real time. Radar is a central sensing modality for MSA. In particular, oceanographic high-frequency surface-wave (HFSW) radars are attractive for surveying large sea areas at over-the-horizon distances, due to their low environmental footprint and low power requirements. However, their design is not optimal for the challenging conditions prevalent in MSA applications, thus calling for the development of dedicated information fusion and multisensor-multitarget tracking algorithms. In this study, the authors show how the multisensor-multitarget tracking problem can be formulated in a Bayesian framework and efficiently solved by running the loopy sum-product algorithm on a suitably devised factor graph. Compared to previously proposed methods, this approach is advantageous in terms of estimation accuracy, computational complexity, implementation flexibility, and scalability. Moreover, its performance can be further enhanced by estimating unknown model parameters in an online fashion and by fusing automatic identification system (AIS) data and context-based information. The effectiveness of the proposed Bayesian multisensor-multitarget tracking and information fusion algorithms is demonstrated through experimental results based on simulated data as well as real HFSW radar data and real AIS data.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
IET Radar, Sonar and Navigation
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
radar
-
dc.subject
Information fusion
-
dc.subject
belief propagation
-
dc.subject
factor graph
-
dc.subject
multitarget tracking
-
dc.subject
sum-product algorithm
-
dc.subject
maritime situational awareness
-
dc.subject
Bayesian inference
-
dc.subject
automatic identification system
-
dc.subject
AIS
-
dc.subject
context-based information
-
dc.subject
HFSW radars
-
dc.title
Bayesian information fusion and multitarget tracking for maritime situational awareness
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1845
-
dc.description.endpage
1857
-
dc.type.category
Original Research Article
-
tuw.container.volume
14
-
tuw.container.issue
12
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IET Radar, Sonar and Navigation
-
tuw.publication.orgunit
E389-03 - Forschungsbereich Signal Processing
-
tuw.publisher.doi
10.1049/iet-rsn.2019.0508
-
dc.identifier.eissn
1751-8792
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0001-7401-1659
-
wb.sci
true
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.facultyfocus
Telekommunikation
de
wb.facultyfocus
Telecommunications
en
wb.facultyfocus.faculty
E350
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
restricted
-
crisitem.author.dept
E389 - Telecommunications
-
crisitem.author.dept
E389-03 - Forschungsbereich Signal Processing
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik