<div class="csl-bib-body">
<div class="csl-entry">Hollaus, K., & Schöbinger, M. (2020). A Mixed Multiscale FEM for the Eddy-Current Problem With T, Φ-Φ in Laminated Conducting Media. <i>IEEE Transactions on Magnetics</i>, <i>56</i>(4). https://doi.org/10.1109/tmag.2019.2954480</div>
</div>
-
dc.identifier.issn
0018-9464
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141230
-
dc.description.abstract
A novel mixed multiscale finite-element method for the eddy-current problem is presented to avoid the necessity of modeling each laminate of the core of electrical devices. The method is based on a current vector potential T and a reduced magnetic scalar potential (RMSP) Φ and copes with the 3-D problems. The edge effect is considered. Material properties are assumed to be linear. Hence, the method is developed for the frequency domain. External currents are represented by the Biot-Savart field serving as excitation. The planes of symmetry are exploited. Numerical simulations are presented, showing excellent accuracy at minimal computational costs.
en
dc.language.iso
en
-
dc.relation.ispartof
IEEE Transactions on Magnetics
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Electronic, Optical and Magnetic Materials
-
dc.title
A Mixed Multiscale FEM for the Eddy-Current Problem With T, Φ-Φ in Laminated Conducting Media
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
56
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
70
-
dcterms.isPartOf.title
IEEE Transactions on Magnetics
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1109/tmag.2019.2954480
-
dc.identifier.eissn
1941-0069
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0002-0395-629X
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
Artikel
-
item.openairetype
Article
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.orcid
0000-0002-0395-629X
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling