<div class="csl-bib-body">
<div class="csl-entry">Lederer, P. L., & Rhebergen, S. (2020). A Pressure-Robust Embedded Discontinuous Galerkin Method for the Stokes Problem by Reconstruction Operators. <i>SIAM Journal on Numerical Analysis</i>, <i>58</i>(5), 2915–2933. https://doi.org/10.1137/20m1318389</div>
</div>
-
dc.identifier.issn
0036-1429
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141246
-
dc.description.abstract
The embedded discontinuous Galerkin (EDG) finite element method for the Stokes problem results in a pointwise divergence-free approximate velocity on cells. However, the approximate velocity is not $H({div})$-conforming, and it can be shown that this is the reason that the EDG method is not pressure-robust, i.e., the error in the velocity depends on the continuous pressure. In this paper we present a local reconstruction operator that maps discretely divergence-free test functions to exactly divergence-free test functions. This local reconstruction operator restores pressure-robustness by only changing the right-hand side of the discretization, similar to the reconstruction operator recently introduced for the Taylor--Hood and mini elements by Lederer et al. [SIAM J. Numer. Anal., 55 (2017), pp. 1291--1314]. We present an a priori error analysis of the discretization showing optimal convergence rates and pressure-robustness of the velocity error. These results are verified by numerical examples. The motivation for this research is that the resulting EDG method combines the versatility of discontinuous Galerkin methods with the computational efficiency of continuous Galerkin methods and accuracy of pressure-robust finite element methods.
en
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM Journal on Numerical Analysis
-
dc.subject
Applied Mathematics
-
dc.subject
Computational Mathematics
-
dc.subject
Numerical Analysis
-
dc.title
A Pressure-Robust Embedded Discontinuous Galerkin Method for the Stokes Problem by Reconstruction Operators
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
2915
-
dc.description.endpage
2933
-
dc.type.category
Original Research Article
-
tuw.container.volume
58
-
tuw.container.issue
5
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
70
-
dcterms.isPartOf.title
SIAM Journal on Numerical Analysis
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1137/20m1318389
-
dc.identifier.eissn
1095-7170
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0001-6036-0356
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
none
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling