<div class="csl-bib-body">
<div class="csl-entry">Acitas, S., Filzmoser, P., & Senoglu, B. (2020). A robust adaptive modified maximum likelihood estimator for the linear regression model. <i>Journal of Statistical Computation and Simulation</i>, <i>91</i>(7), 1394–1414. https://doi.org/10.1080/00949655.2020.1856847</div>
</div>
-
dc.identifier.issn
0094-9655
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141456
-
dc.description.abstract
Robust estimators are widely used in regression analysis when the normality assumption is not satisfied. One example of robust estimators for regression is adaptive modified maximum likelihood (AMML) estimators [Donmez A. Adaptive estimation and hypothesis testing methods [dissertation]. Ankara: METU; 2010]. However, they are not robust to x outliers, so-called leverage points. In this study, we propose a new estimator called robust AMML (RAMML) which is not only robust to y outliers but also to x outliers. A simulation study is carried out to compare the performance of the RAMML estimators with some existing robust estimators. The results show that the RAMML estimators are preferable in most of the settings according to the mean squared error (MSE) criterion. Two data sets taken from the literature are also analyzed to show the implementation of the RAMML estimation methodology.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Statistical Computation and Simulation
-
dc.subject
Applied Mathematics
-
dc.subject
Modeling and Simulation
-
dc.subject
Statistics and Probability
-
dc.subject
Statistics, Probability and Uncertainty
-
dc.title
A robust adaptive modified maximum likelihood estimator for the linear regression model
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1394
-
dc.description.endpage
1414
-
dc.type.category
Original Research Article
-
tuw.container.volume
91
-
tuw.container.issue
7
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte