<div class="csl-bib-body">
<div class="csl-entry">Balko, M., Bhore, S. K., Martínez-Sandoval, L., & Valtr, P. (2020). On Erdős-Szekeres-type problems for 𝑘-convex point sets. <i>European Journal of Combinatorics</i>, <i>89</i>, Article 103157. https://doi.org/10.1016/j.ejc.2020.103157</div>
</div>
-
dc.identifier.issn
0195-6698
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141624
-
dc.description.abstract
We study Erdős-Szekeres-type problems for 𝑘-convex point sets,a recently introduced notion that naturally extends the concept of convex position. A finite set 𝑆 of 𝑛 points is 𝑘-convex if there exists a spanning simple polygonization of 𝑆 such that the intersection of any straight line with its interior consists of at most 𝑘 connected components. We address several open problems about 𝑘-convex pointsets. In particular, we extend the well-known Erdős-Szekeres Theorem by showing that, for every fixed 𝑘∈ℕ, every set ofnpoints in the plane ingeneral position(with no three collinearpoints) contains a 𝑘-convex subset of size at least Ω(logk𝑛).We also show that there are arbitrarily large 3-convex sets of n points in the plane in general position whose largest 1-convex subset has size O(log𝑛). This gives a solution to a problem posed by Aichholzer et al. (2014).We prove that there is a constant c>0 such that, for every 𝑛∈ℕ, there is a set S of n points in the plane in general position such that every 2-convex polygon spanned by at least c·log 𝑛 points from S contains a point of S in its interior. This matches an earlier upper bound by Aichholzer et al. (2014) up to a multiplicative constant and answers another of their open problems.
en
dc.language.iso
en
-
dc.publisher
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
European Journal of Combinatorics
-
dc.subject
Discrete Mathematics and Combinatorics
-
dc.title
On Erdős-Szekeres-type problems for 𝑘-convex point sets
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
89
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
European Journal of Combinatorics
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1016/j.ejc.2020.103157
-
dc.date.onlinefirst
2020-05-27
-
dc.identifier.articleid
103157
-
dc.identifier.eissn
1095-9971
-
dc.description.numberOfPages
22
-
tuw.author.orcid
0000-0001-9688-9489
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Logic and Computation (LC)
de
wb.facultyfocus
Logic and Computation (LC)
en
wb.facultyfocus.faculty
E180
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Charles University
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity