<div class="csl-bib-body">
<div class="csl-entry">Noy, M., Requilé, C., & Rué, J. (2020). Further results on random cubic planar graphs. <i>Random Structures and Algorithms</i>, <i>56</i>(3), 892–924. https://doi.org/10.1002/rsa.20893</div>
</div>
-
dc.identifier.issn
1042-9832
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141769
-
dc.description.abstract
We provide precise asymptotic estimates for the number of several classes of labeled cubic planar graphs, and we analyze properties of such random graphs under the uniform distribution. This model was first analyzed by Bodirsky and coworkers. We revisit their work and obtain new results on the enumeration of cubic planar graphs and on random cubic planar graphs. In particular, we determine the exact probability of a random cubic planar graph being connected, and we show that the distribution of the number of triangles in random cubic planar graphs is asymptotically normal with linear expectation and variance. To the best of our knowledge, this is the first time one is able to determine the asymptotic distribution for the number of copies of a fixed graph containing a cycle in classes of random planar graphs arising from planar maps.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Random Structures and Algorithms
-
dc.subject
Applied Mathematics
-
dc.subject
Software
-
dc.subject
General Mathematics
-
dc.subject
Computer Graphics and Computer-Aided Design
-
dc.title
Further results on random cubic planar graphs
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
892
-
dc.description.endpage
924
-
dc.type.category
Original Research Article
-
tuw.container.volume
56
-
tuw.container.issue
3
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Random Structures and Algorithms
-
tuw.publication.orgunit
E104-05 - Forschungsbereich Kombinatorik und Algorithmen