<div class="csl-bib-body">
<div class="csl-entry">Kardos, C., La Flamme, C., Gallina, V., & Sihn, W. (2020). Dynamic scheduling in a job-shop production system with reinforcement learning. In S. Makris (Ed.), <i>8th CIRP Conference of Assembly Technology and Systems</i> (pp. 104–109). Elsevier BV. https://doi.org/10.1016/j.procir.2020.05.210</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141834
-
dc.description.abstract
Fluctuating customer demands, expected short delivery times and the need for quick order confirmation creates a fast-paced scheduling environment for modern production systems. In this turbulent scene, us- ing the data provided by intelligent elements of cyber-physical production systems opens up new pos- sibilities for dynamic scheduling. The paper introduces a reinforcement learning approach, in particular Q-Learning, to reduce the average lead-time of production orders in a job-shop production system. The intelligent product agents are able to choose a machine for every production step based on real-time information. A performance comparison against standard dispatching rules is given, which shows that in the presented dynamic scheduling use-cases the application of RL reduces the average lead-time.
en
dc.relation.ispartofseries
Procedia CIRP
-
dc.subject
General Materials Science
-
dc.subject
simulation
-
dc.subject
smart factory
-
dc.subject
reinforcement learning
-
dc.subject
dynamic scheduling
-
dc.title
Dynamic scheduling in a job-shop production system with reinforcement learning
-
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
8th CIRP Conference of Assembly Technology and Systems
-
dc.contributor.editoraffiliation
Laboratory for Manufacturing Systems & Automation, Department of Mechanical Engineering & Aeronautics
-
dc.relation.issn
2212-8271
-
dc.description.startpage
104
-
dc.description.endpage
109
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
8th CIRP Conference of Assembly Technology and Systems
-
tuw.container.volume
97
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Procedia CIRP
-
tuw.relation.publisher
Elsevier BV
-
tuw.researchTopic.id
I6a
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Digital Transformation in Manufacturing
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E330-02 - Forschungsbereich Betriebstechnik, Systemplanung und Facility Management
-
tuw.publisher.doi
10.1016/j.procir.2020.05.210
-
dc.description.numberOfPages
6
-
tuw.event.name
8th CIRP Conference of Assembly Technology and Systems
-
tuw.event.startdate
29-09-2020
-
tuw.event.enddate
01-10-2020
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Athens
-
tuw.event.country
GR
-
tuw.event.presenter
Kardos, Csaba
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
5020
-
wb.facultyfocus
Außerhalb der primären Forschungsgebiete der Fakultät
de
wb.facultyfocus
Outside the Faculty's primary research activities
en
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften