<div class="csl-bib-body">
<div class="csl-entry">Lingitz, L., & Sihn, W. (2020). Concepts to Improve the Quality of Production Plans using Machine Learning. <i>Acta IMEKO</i>, <i>9</i>(1), 32. https://doi.org/10.21014/acta_imeko.v9i1.751</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141895
-
dc.description.abstract
There are always deviations between production planning and subsequent execution. Furthermore, it has been found that the reliability of production plans and thus Planning Quality (PQ) can drop down to 25 % in the first three days after plan creation [1]. These deviations are caused by uncertainties, such as inaccurate or insufficient planning data (including data quality and availability); inappropriate planning and control systems; and unforeseeable events. Production planners therefore use buffers in the form of inventories or extended transitional periods to create possibilities for implementing corrective measures in production control. Buffers, however, lead to increased coordination and control efforts as well as to negative effects, particularly on the inventory, throughput time, and capacity utilisation. The potential for more accurate planning remains largely unexploited. The objective of this paper is to investigate the possibilities of increasing planning quality. Within a case study, the authors demonstrate how machine learning can be used to predict cycle times. Furthermore, the increased accuracy compared to the current method is shown. Based thereon, two approaches are presented, focusing on the reduction of gaps between the master data and predicted data used during the production planning process. Moreover, further research needs are identified.
en
dc.language.iso
en
-
dc.publisher
International Measurement Confederation (IMEKO)
-
dc.relation.ispartof
Acta IMEKO
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Mechanical Engineering
-
dc.subject
machine learning
-
dc.subject
prediction
-
dc.subject
Instrumentation
-
dc.subject
production planning
-
dc.subject
planning quality
-
dc.subject
master data
-
dc.title
Concepts to Improve the Quality of Production Plans using Machine Learning
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Fraunhofer Austria, Austria
-
dc.description.startpage
32
-
dc.type.category
Original Research Article
-
tuw.container.volume
9
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Acta IMEKO
-
tuw.publication.orgunit
E330-02 - Forschungsbereich Betriebstechnik, Systemplanung und Facility Management
-
tuw.publisher.doi
10.21014/acta_imeko.v9i1.751
-
dc.identifier.eissn
2221-870X
-
dc.description.numberOfPages
8
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
5020
-
wb.facultyfocus
Außerhalb der primären Forschungsgebiete der Fakultät
de
wb.facultyfocus
Outside the Faculty's primary research activities
en
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften