<div class="csl-bib-body">
<div class="csl-entry">Iuorio, A., Kuehn, C., & Szmolyan, P. (2020). Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. <i>Discrete and Continuous Dynamical Systems - Series S</i>, <i>13</i>(4), 1269–1290. https://doi.org/10.3934/dcdss.2020073</div>
</div>
-
dc.identifier.issn
1937-1632
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141917
-
dc.description.abstract
We investigate a singularly perturbed, non-convex variational problem arising in material science with a combination of geometrical and numerical methods. Our starting point is a work by Stefan Müller, where it is proven that the solutions of the variational problem are periodic and exhibit a complicated multi-scale structure. In order to get more insight into the rich solution structure, we transform the corresponding Euler-Lagrange equation into a Hamiltonian system of first order ODEs and then use geometric singular perturbation theory to study its periodic solutions. Based on the geometric analysis we construct an initial periodic orbit to start numerical continuation of periodic orbits with respect to the key parameters. This allows us to observe the influence of the parameters on the behavior of the orbits and to study their interplay in the minimization process. Our results confirm previous analytical results such as the asymptotics of the period of minimizers predicted by Müller. Furthermore, we find several new structures in the entire space of admissible periodic orbits.
en
dc.language.iso
en
-
dc.publisher
AMER INST MATHEMATICAL SCIENCES-AIMS
-
dc.relation.ispartof
Discrete and Continuous Dynamical Systems - Series S
-
dc.subject
Applied Mathematics
-
dc.subject
Analysis
-
dc.subject
singular perturbation
-
dc.subject
Discrete Mathematics and Combinatorics
-
dc.subject
Microstructure
-
dc.subject
numerical continuation
-
dc.subject
Euler-Lagrange equation
-
dc.subject
saddle-type slow manifolds
-
dc.title
Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1269
-
dc.description.endpage
1290
-
dc.type.category
Original Research Article
-
tuw.container.volume
13
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Discrete and Continuous Dynamical Systems - Series S
-
tuw.publication.orgunit
E101-01 - Forschungsbereich Analysis
-
tuw.publisher.doi
10.3934/dcdss.2020073
-
dc.identifier.eissn
1937-1179
-
dc.description.numberOfPages
22
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
crisitem.author.dept
E101-01 - Forschungsbereich Analysis
-
crisitem.author.dept
E101-01 - Forschungsbereich Analysis
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing