<div class="csl-bib-body">
<div class="csl-entry">Eichinger, B., Fillman, J., Gwaltney, E., & Lukić, M. (2022). Limit-periodic Dirac operators with thin spectra. <i>Journal of Functional Analysis</i>, <i>283</i>(12), Article 109711. https://doi.org/10.1016/j.jfa.2022.109711</div>
</div>
-
dc.identifier.issn
0022-1236
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141939
-
dc.description.abstract
We prove that limit-periodic Dirac operators generically have spectra of zero Lebesgue measure and that a dense set of them have spectra of zero Hausdorff dimension. The proof combines ideas of Avila from a Schrödinger setting with a new commutation argument for generating open spectral gaps. This overcomes an obstacle previously observed in the literature; namely, in Schrödinger-type settings, translation of the spectral measure corresponds to small L∞-perturbations of the operator data, but this is not true for Dirac or CMV operators. The new argument is much more model-independent. To demonstrate this, we also apply the argument to prove generic zero-measure spectrum for CMV matrices with limit-periodic Verblunsky coefficients.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)