<div class="csl-bib-body">
<div class="csl-entry">Stanger, L., Schirrer, A., Benedikt, F., Bartik, A., Jankovic, S., Müller, S., & Kozek, M. (2023). Dynamic modeling of dual fluidized bed steam gasification for control design. <i>Energy</i>, <i>265</i>, Article 126378. https://doi.org/10.1016/j.energy.2022.126378</div>
</div>
-
dc.identifier.issn
0360-5442
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/141995
-
dc.description.abstract
Dual fluidized bed steam gasification allows the production of high-value product gas from woody biomass or biogenic residuals. Advanced control concepts such as model predictive control are promising approaches to improve the process performance and efficiency. These control techniques require dynamic models of the process that can predict the plant’s behavior as a function of the manipulated variables. This paper presents a gray-box modeling approach based on mass and energy balances to obtain a mathematical description of the temperatures inside the two reactors and the total mass flows leaving the reactors. The model incorporates data-driven components where first-principle modeling is hardly possible with reasonable effort. An artificial neural network is utilized to model the bed material circulation between the two reactors. Experiments were carried out at a 100 kW pilot plant to generate measurement data both for system identification and model validation. Simulations verify that the model achieves reliable predictions for the dual fluidized bed gasification process.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Energy
-
dc.subject
Dual fluidized bed
en
dc.subject
Biomass gasification
en
dc.subject
Dynamic prediction model
en
dc.subject
Gray-box modeling
en
dc.subject
Artificial neural network
en
dc.title
Dynamic modeling of dual fluidized bed steam gasification for control design
en
dc.type
Article
en
dc.type
Artikel
de
dc.relation.grantno
881135
-
dcterms.dateSubmitted
2022-09-07
-
dc.type.category
Original Research Article
-
tuw.container.volume
265
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Comprehensive Automation, Digitalisation & Optimization of Renewable & Sustainable SNG-production
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
E3
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.name
Climate Neutral, Renewable and Conventional Energy Supply Systems
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Energy
-
tuw.publication.orgunit
E325 - Institut für Mechanik und Mechatronik
-
tuw.publication.orgunit
E166 - Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften
-
tuw.publisher.doi
10.1016/j.energy.2022.126378
-
dc.date.onlinefirst
2022-12-09
-
dc.identifier.articleid
126378
-
dc.identifier.eissn
1873-6785
-
tuw.author.orcid
0000-0003-3846-732X
-
tuw.author.orcid
0000-0002-8600-1375
-
tuw.author.orcid
0000-0001-9350-546X
-
tuw.author.orcid
0000-0001-5334-6660
-
tuw.author.orcid
0000-0001-8878-429X
-
wb.sci
true
-
wb.sciencebranch
Chemische Verfahrenstechnik
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch.oefos
2040
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.openairetype
Article
-
item.openairetype
Artikel
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH