<div class="csl-bib-body">
<div class="csl-entry">Glechner, T., Bahr, A. A. I., Hahn, R., Wojcik, T., Heller Martina, Kirnbauer, A., Ramm, J., Kolozsvári, S., Felfer, P., & Riedl-Tragenreif, H. (2022). High temperature oxidation resistance of physical vapor deposited Hf-Si-B2±z thin films. <i>Corrosion Science</i>, <i>205</i>, Article 110413. https://doi.org/10.1016/j.corsci.2022.110413</div>
</div>
-
dc.identifier.issn
0010-938X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142040
-
dc.description.abstract
Within physical vapor deposited Hf-Si-B2±z thin films, selective diffusion-driven oxidation of Si is identified to cause outstanding oxidation resistance at temperatures up to 1500 °C. After 60 h at 1200 °C, the initially 2.47 µm thin Hf0.20Si0.23B0.57 thin film exhibits a dense oxide scale of only 1.56 µm. The thermally induced decomposition of metastable Hf-Si-B2±z leads not only to the formation of Si precipitates within the remaining thin film (related to a non-homogenous Si distribution after the deposition) but also to pure Si layers on top and bottom of the Hf-Si-B2±z coatings next to the excellent adherend SiO2 based scales.
en
dc.description.sponsorship
CDG Christian Doppler Forschungsgesellschaft
-
dc.language.iso
en
-
dc.publisher
Elsevier
-
dc.relation.ispartof
Corrosion Science
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
APT
en
dc.subject
Hf-Si-B
en
dc.subject
Oxidation
en
dc.subject
PVD
en
dc.subject
Si diffusion
en
dc.subject
TEM
en
dc.subject
Ultra-high temperature
en
dc.title
High temperature oxidation resistance of physical vapor deposited Hf-Si-B2±z thin films