<div class="csl-bib-body">
<div class="csl-entry">Kurniawan, K., Ekelhart, A., Kiesling, E., Quirchmayr, G., & Tjoa, A. M. (2022). Kyrstal: Knowledge Graph-based framework for tactical attach discovery in audit data. <i>Computers and Security</i>, <i>121</i>, Article 102828. https://doi.org/10.1016/j.cose.2022.102828</div>
</div>
-
dc.identifier.issn
0167-4048
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142172
-
dc.description.abstract
Attack graph-based methods are a promising approach towards discovering attacks and various techniques have been proposed recently. A key limitation, however, is that approaches developed so far are monolithic in their architecture and heterogeneous in their internal models. The inflexible custom data models of existing prototypes and the implementation of rules in code rather than declarative languages on the one hand make it difficult to combine, extend, and reuse techniques, and on the other hand hinder reuse of security knowledge – including detection rules and threat intelligence. KRYSTAL tackles these challenges by providing a knowledge graph-based, modular framework for threat detection, attack graph and scenario reconstruction, and analysis based on RDF as a standard model for knowledge representation. This approach provides query options that facilitate contextualization over internal and external background knowledge, as well as the integration of multiple detection techniques, including tag propagation, attack signatures, and graph queries. We implemented our framework in an openly available prototype and demonstrate its applicability on multiple scenarios of the DARPA Transparent Computing dataset. Our evaluation shows that the combination of different threat detection techniques within our framework improved detection capabilities. Furthermore, we find that RDF provenance graphs are scalable and can efficiently support a variety of threat detection techniques.
en
dc.description.sponsorship
CDG Christian Doppler Forschungsgesellschaft; CDG Christian Doppler Forschungsgesellschaft
-
dc.language.iso
en
-
dc.publisher
ELSEVIER ADVANCED TECHNOLOGY
-
dc.relation.ispartof
Computers and Security
-
dc.subject
Attack graph construction
en
dc.subject
Information security
en
dc.subject
Cybersecurity
en
dc.subject
Attack discovery
en
dc.subject
Knowledge graph
en
dc.subject
Log analysis
en
dc.title
Kyrstal: Knowledge Graph-based framework for tactical attach discovery in audit data
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Vienna University of Economics and Business, Austria
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.contributor.affiliation
Vienna University of Economics and Business, Austria
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.relation.grantno
CDL SQI
-
dcterms.dateSubmitted
2022
-
dc.type.category
Original Research Article
-
tuw.container.volume
121
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Verbesserung der Sicherheit von Informationsprozessen in Produktionssystemen
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Computers and Security
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Software Engineering
-
tuw.publisher.doi
10.1016/j.cose.2022.102828
-
dc.date.onlinefirst
2022-10
-
dc.identifier.articleid
102828
-
dc.identifier.eissn
1872-6208
-
tuw.author.orcid
0000-0002-8295-9252
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0002-8295-9252
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering