<div class="csl-bib-body">
<div class="csl-entry">Oberweger, F. F., Raidl, G., Rönnberg, E., & Huber, M. (2022). A Learning Large Neighborhood Search for the Staff Rerostering Problem. In P. Schaus (Ed.), <i>Integration of Constraint Programming, Artificial Intelligence, and Operations Research</i> (pp. 300–317). Springer International Publishing. https://doi.org/10.1007/978-3-031-08011-1_20</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142181
-
dc.description.abstract
To effectively solve challenging staff rerostering problems, we propose to enhance a large neighborhood search (LNS) with a machine learning guided destroy operator. This operator uses a conditional generative model to identify variables that are promising to select and combines this with the use of a special sampling strategy to make the actual selection. Our model is based on a graph neural network (GNN) and takes a problem-specific graph representation as input. Imitation learning is applied to mimic a time-expensive approach that solves a mixed-integer program (MIP) for finding an optimal destroy set in each iteration. An additional GNN is employed to predict a suitable temperature for the destroy set sampling process. The repair operator is realized by solving a MIP. Our learning LNS outperforms directly solving a MIP with Gurobi and yields improvements compared to a well-performing LNS with a manually designed destroy operator, also when generalizing to schedules with various numbers of employees.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Imitation Learning
en
dc.subject
Large neighborhood search
en
dc.subject
Machine Learning
en
dc.subject
Staff rerostering
en
dc.title
A Learning Large Neighborhood Search for the Staff Rerostering Problem
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Linköping University, Sweden
-
dc.relation.isbn
978-3-031-08011-1
-
dc.description.startpage
300
-
dc.description.endpage
317
-
dc.relation.grantno
W1260-N35
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Integration of Constraint Programming, Artificial Intelligence, and Operations Research
-
tuw.container.volume
13292
-
tuw.relation.publisher
Springer International Publishing
-
tuw.relation.publisherplace
Cham, Switzerland
-
tuw.project.title
Doktoratskolleg "Vienna Graduate School on Computational Optimization"
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1007/978-3-031-08011-1_20
-
dc.description.numberOfPages
18
-
tuw.author.orcid
0000-0002-3293-177X
-
tuw.editor.orcid
0000-0002-3153-8941
-
tuw.event.name
19th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2022)
en
dc.description.sponsorshipexternal
Center for Industrial Information Technology (CENIIT)
-
dc.relation.grantnoexternal
16.05
-
tuw.event.startdate
20-06-2022
-
tuw.event.enddate
23-06-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Los Angeles, CA
-
tuw.event.country
US
-
tuw.event.presenter
Oberweger, Fabio Francisco
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
Link�ping University
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity