<div class="csl-bib-body">
<div class="csl-entry">Brand, C., Ceylan, E., Ganian, R., Hatschka, C., & Korchemna, V. (2022). Edge-Cut Width: An Algorithmically Driven Analogue of Treewidth Based on Edge Cuts. In M. A. Bekos & M. Kaufmann (Eds.), <i>Graph-Theoretic Concepts in Computer Science</i> (pp. 98–113). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-15914-5_8</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142185
-
dc.description.abstract
Decompositional parameters such as treewidth are commonly used to obtain fixed-parameter algorithms for $$\textsf{NP}$$ -hard graph problems. For problems that are $${{\textsf{W}}} [1]$$ -hard parameterized by treewidth, a natural alternative would be to use a suitable analogue of treewidth that is based on edge cuts instead of vertex separators. While tree-cut width has been coined as such an analogue of treewidth for edge cuts, its algorithmic applications have often led to disappointing results: out of twelve problems where one would hope for fixed-parameter tractability parameterized by an edge-cut based analogue to treewidth, eight were shown to be $${{\textsf{W}}} [1]$$ -hard parameterized by tree-cut width. As our main contribution, we develop an edge-cut based analogue to treewidth called edge-cut width. Edge-cut width is, intuitively, based on measuring the density of cycles passing through a spanning tree of the graph. Its benefits include not only a comparatively simple definition, but mainly that it has interesting algorithmic properties: it can be computed by a fixed-parameter algorithm, and it yields fixed-parameter algorithms for all the aforementioned problems where tree-cut width failed to do so.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
graph parameters
en
dc.subject
parameterized complexity
en
dc.subject
tree-cut width
en
dc.title
Edge-Cut Width: An Algorithmically Driven Analogue of Treewidth Based on Edge Cuts
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-15914-5
-
dc.description.startpage
98
-
dc.description.endpage
113
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Graph-Theoretic Concepts in Computer Science
-
tuw.container.volume
13453
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer Nature Switzerland AG
-
tuw.relation.publisherplace
Cham, Switzerland
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1007/978-3-031-15914-5_8
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0002-1929-055X
-
tuw.author.orcid
0000-0002-7762-8045
-
tuw.author.orcid
0000-0002-0881-8259
-
tuw.author.orcid
0000-0001-8038-905X
-
tuw.event.name
48th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2022
en
tuw.event.startdate
22-06-2022
-
tuw.event.enddate
24-06-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Tübingen
-
tuw.event.country
DE
-
tuw.event.presenter
Brand, Cornelius
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity