<div class="csl-bib-body">
<div class="csl-entry">Gottlob, G., Lanzinger, M., Okulmus, C., & Pichler, R. (2022). Fast Parallel Hypertree Decompositions in Logarithmic Recursion Depth. In <i>Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems</i> (pp. 325–336). Association for Computing Machinery. https://doi.org/10.1145/3517804.3524153</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142192
-
dc.description.abstract
Various classic reasoning problems with natural hypergraph representations are known to be tractable when a hypertree decomposition (HD) of low width exists. The resulting algorithms are attractive for practical use in fields like databases and constraint satisfaction. However, algorithmic use of HDs relies on the difficult task of first computing a decomposition of the hypergraph underlying a given problem instance, which is then used to guide the algorithm for this particular instance. The performance of purely sequential methods for computing HDs is inherently limited, yet the problem is, theoretically, amenable to parallelisation. In this paper we propose the first algorithm for computing hypertree decompositions that is well-suited for parallelisation. The newly proposed algorithm log-k-decomp requires only a logarithmic number of recursion levels and additionally allows for highly parallelised pruning of the search space by restriction to so-called balanced separators. We provide a detailed experimental evaluation over the HyperBench benchmark and demonstrate that log-k-decomp outperforms the current state-of-The-Art significantly.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.subject
hypergraph decomposition
en
dc.subject
hypertree width
en
dc.subject
parallel algorithms
en
dc.title
Fast Parallel Hypertree Decompositions in Logarithmic Recursion Depth
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Oxford, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
9781450392600
-
dc.relation.doi
10.1145/3517804
-
dc.description.startpage
325
-
dc.description.endpage
336
-
dc.relation.grantno
P30930-N35
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York, NY, United States
-
tuw.project.title
HyperTrac: hypergraph Decompositions and Tractability
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1145/3517804.3524153
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0002-7742-0439
-
tuw.author.orcid
0000-0002-1760-122X
-
tuw.event.name
PODS '22: International Conference on Management of Data
en
tuw.event.startdate
12-06-2022
-
tuw.event.enddate
17-06-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Philadelphia
-
tuw.event.country
US
-
tuw.event.presenter
Okulmus, Cem
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence