<div class="csl-bib-body">
<div class="csl-entry">Dave, S., Marchisio, A., Hanif, M. A., Guesmi, A., Shrivastava, A., Alouani, I., & Shafique, M. (2022). Special Session: Towards an Agile Design Methodology for Efficient, Reliable, and Secure ML Systems. In <i>Proceedings 2022 IEEE 40th VLSI Test Symposium (VTS)</i> (pp. 1–14). https://doi.org/10.1109/VTS52500.2021.9794253</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142205
-
dc.description.abstract
The real-world use cases of Machine Learning (ML) have exploded over the past few years. However, the current computing infrastructure is insufficient to support all real-world applications and scenarios. Apart from high efficiency requirements, modern ML systems are expected to be highly reliable against hardware failures as well as secure against adversarial and IP stealing attacks. Privacy concerns are also becoming a first-order issue. This article summarizes the main challenges in agile development of efficient, reliable and secure ML systems, and then presents an outline of an agile design methodology to generate efficient, reliable and secure ML systems based on user-defined constraints and objectives.
en
dc.language.iso
en
-
dc.subject
Agility
en
dc.subject
Codesign
en
dc.subject
DNN
en
dc.subject
Energy efficiency
en
dc.subject
ML
en
dc.subject
Neural Networks
en
dc.subject
Performance
en
dc.subject
Privacy
en
dc.subject
Reliability
en
dc.subject
Robustness
en
dc.subject
Security
en
dc.title
Special Session: Towards an Agile Design Methodology for Efficient, Reliable, and Secure ML Systems
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Arizona State University
-
dc.contributor.affiliation
Arizona State University (ASU), USA
-
dc.contributor.affiliation
Université Polytechnique Hauts-de-France, France
-
dc.contributor.affiliation
New York Univeersity Abu Dhabi (NYUAD), United Arab Emirates
-
dc.relation.isbn
978-1-6654-1060-1
-
dc.description.startpage
1
-
dc.description.endpage
14
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings 2022 IEEE 40th VLSI Test Symposium (VTS)
-
tuw.container.volume
2022-April
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1109/VTS52500.2021.9794253
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0000-0003-4262-3938
-
tuw.author.orcid
0000-0002-0689-4776
-
tuw.author.orcid
0000-0002-8992-7958
-
tuw.event.name
2022 IEEE 40th VLSI Test Symposium (VTS)
en
tuw.event.startdate
25-04-2022
-
tuw.event.enddate
27-04-2022
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
US
-
tuw.event.presenter
Marchisio, Alberto
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
crisitem.author.dept
Arizona State University
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
Arizona State University (ASU), USA
-
crisitem.author.dept
Universit� Polytechnique Hauts-de-France
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems