<div class="csl-bib-body">
<div class="csl-entry">Chajda, I., Emir, K., Fazio, D., Länger, H., Ledda, A., & Paseka, J. (2022). An algebraic analysis of implication in non-distributive logics. <i>Journal of Logic and Computation</i>, <i>33</i>(1), 47–89. https://doi.org/10.1093/logcom/exac041</div>
</div>
-
dc.identifier.issn
0955-792X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142214
-
dc.description.abstract
In this paper, we introduce the concept of a (lattice) skew Hilbert algebra as a natural generalization of Hilbert algebras. This notion allows a unified treatment of several structures of prominent importance for mathematical logic, e.g. (generalized) orthomodular lattices, and MV-algebras, which admit a natural notion of implication. In fact, it turns out that skew Hilbert algebras play a similar role for (strongly) sectionally pseudocomplemented posets as Hilbert algebras do for relatively pseudocomplemented ones. We will discuss basic properties of closed, dense and weakly dense elements of skew Hilbert algebras and their applications, and we will provide some basic results on their structure theory.
en
dc.language.iso
en
-
dc.publisher
OXFORD UNIV PRESS
-
dc.relation.ispartof
Journal of Logic and Computation
-
dc.subject
Hilbert algebra
en
dc.subject
skew Hilbert algebra
en
dc.subject
pseudocomplemented lattice
en
dc.subject
sectionally pseudocomplemented lattice
en
dc.subject
orthomodular lattice
en
dc.subject
implication algebra
en
dc.title
An algebraic analysis of implication in non-distributive logics
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Palacky University, Czech Republic
-
dc.contributor.affiliation
Masaryk University, Czech Republic
-
dc.contributor.affiliation
University of Cagliari, Italy
-
dc.contributor.affiliation
University of Cagliari, Italy
-
dc.contributor.affiliation
Masarykova Univerzita
-
dc.description.startpage
47
-
dc.description.endpage
89
-
dcterms.dateSubmitted
2021-12-13
-
dc.type.category
Original Research Article
-
tuw.container.volume
33
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Logic and Computation
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.1093/logcom/exac041
-
dc.date.onlinefirst
2022-06-24
-
dc.identifier.eissn
1465-363X
-
dc.description.numberOfPages
43
-
tuw.author.orcid
0000-0003-3840-3879
-
tuw.author.orcid
0000-0003-2569-7214
-
tuw.author.orcid
0000-0001-6658-6647
-
dc.description.sponsorshipexternal
Austrian Science Fund
-
dc.description.sponsorshipexternal
Czech Science Foundation
-
dc.description.sponsorshipexternal
OeAD-GmbH
-
dc.description.sponsorshipexternal
IGA
-
dc.relation.grantnoexternal
I 4579-N
-
dc.relation.grantnoexternal
20-09869L
-
dc.relation.grantnoexternal
CZ 02/2019
-
dc.relation.grantnoexternal
PrF 2021 030
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
crisitem.author.dept
Palacky University, Czech Republic
-
crisitem.author.dept
Masaryk University, Czech Republic
-
crisitem.author.dept
University of Cagliari
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie