<div class="csl-bib-body">
<div class="csl-entry">Bicher, M., Wastian, M., Brunmeir, D., & Popper, N. (2022). Review on Monte Carlo Simulation Stopping Rules: How Many Samples Are Really Enough? <i>Simulation Notes Europe</i>, <i>32</i>(1), 1–8. https://doi.org/10.11128/sne.32.on.10591</div>
</div>
-
dc.identifier.issn
2305-9974
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142241
-
dc.description.abstract
Due to extensive usage of stochastic simulation models correct execution of Monte Carlo simulation has become more and more important. Hereby the unknown real mean of the simulation result is estimated by the sample mean of a large number of simulation evaluations. Unfortunately, this procedure is often done carelessly. Modellers commonly use replication counts without scientific justification and sometimes underestimate the consequences of a bad or even wrong choice: if it is chosen too small, the sample mean is not a representative approximation for the regarded mean, and not only the simulation output, but also any kind of simulation analysis will not be representative at all. If the number is chosen too high, the Monte Carlo experiment will consume unnecessary computation time, which could, exemplarily, be invested into deeper model analysis instead. In this work, we present four methods that allow calculating an optimal replication number for Monte Carlo simulation and getting an image about the error between the estimated and the real mean value. The methods are furthermore evaluated on a simple case study, a stochastic cellular automaton model for simulation of an infectious disease.
en
dc.language.iso
en
-
dc.relation.ispartof
Simulation Notes Europe
-
dc.subject
Chebyshev Inequality Stopping Rule
en
dc.subject
Gauss-Distribution Stopping Rule
en
dc.subject
Estimation of the Variance
en
dc.subject
Application of Stopping Rules
en
dc.title
Review on Monte Carlo Simulation Stopping Rules: How Many Samples Are Really Enough?
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
1
-
dc.description.endpage
8
-
dc.type.category
Original Research Article
-
tuw.container.volume
32
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Simulation Notes Europe
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
tuw.publisher.doi
10.11128/sne.32.on.10591
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-1362-6868
-
tuw.author.orcid
0000-0003-4615-2774
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
Article
-
item.openairetype
Artikel
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing