<div class="csl-bib-body">
<div class="csl-entry">Stufler, B. (2022). Quenched Local Convergence of Boltzmann Planar Maps. <i>Journal of Theoretical Probability</i>, <i>35</i>(2), 1324–1342. https://doi.org/10.1007/s10959-021-01089-2</div>
</div>
-
dc.identifier.issn
0894-9840
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142262
-
dc.description.abstract
Stephenson (2018) established annealed local convergence of Boltzmann planar maps conditioned to be large. The present work uses results on rerooted multi-type branching trees to prove a quenched version of this limit.
en
dc.language.iso
en
-
dc.publisher
SPRINGER/PLENUM PUBLISHERS
-
dc.relation.ispartof
Journal of Theoretical Probability
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Boltzmann planar maps
en
dc.subject
Local convergence
en
dc.subject
Multi-type Galton–Watson trees
en
dc.title
Quenched Local Convergence of Boltzmann Planar Maps