<div class="csl-bib-body">
<div class="csl-entry">Stufler, B. (2022). Rerooting Multi-type Branching Trees: The Infinite Spine Case. <i>Journal of Theoretical Probability</i>, <i>35</i>, 653–684. https://doi.org/10.1007/s10959-020-01069-y</div>
</div>
-
dc.identifier.issn
0894-9840
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142268
-
dc.description.abstract
We prove local convergence results for rerooted conditioned multi-type Galton–Watson trees. The limit objects are multitype variants of the random sin-tree constructed by Aldous (1991), and differ according to which types recur infinitely often along the backwards growing spine.
-
dc.language.iso
en
-
dc.publisher
SPRINGER/PLENUM PUBLISHERS
-
dc.relation.ispartof
Journal of Theoretical Probability
-
dc.subject
Fringe distributions
-
dc.subject
Local convergence
-
dc.subject
Multi-type Galton–Watson trees
-
dc.title
Rerooting Multi-type Branching Trees: The Infinite Spine Case