<div class="csl-bib-body">
<div class="csl-entry">Schöbinger, M., Schöberl, J., & Hollaus, K. (2019). Multiscale FEM for the Linear 2-D/1-D Problem of Eddy Currents in Thin Iron Sheets. <i>IEEE Transactions on Magnetics</i>, <i>55</i>(1), 1–12. https://doi.org/10.1109/tmag.2018.2879030</div>
</div>
-
dc.identifier.issn
0018-9464
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142428
-
dc.description.abstract
A novel 2-D/1-D approach to simulate the eddy currents in a single thin iron sheet is presented. The introduced method utilizes ideas of the multiscale finite-element method by reducing the 3-D problem to a 2-D one. This is achieved via a decomposition of the solution with respect to its dependence on the coordinate directions. The decomposition is approximated using an expansion into polynomial shape functions. Integration over the respective coordinate gives an explicit 2-D problem. This eliminates the need to iteratively solve two coupled problems, as it is done in conventional 2-D/1-D methods. As another important advantage, the presented method allows for the incorporation of air gaps between the steel sheets. This can be done "for free," i.e., without the introduction of additional unknowns and without changing the complexity of the resulting problem. The derivation is shown in detail for both the magnetic vector potential and the current vector potential formulation, giving explicit formulas for low polynomial orders of the used shape functions and illustrating how to proceed for shape functions of arbitrary degree. Finally, the developed method is tested in two numerical examples utilizing different geometries for the iron sheet and the computational efficiency is studied via comparison with a suitable standard finite-element model.
en
dc.language.iso
en
-
dc.relation.ispartof
IEEE Transactions on Magnetics
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Electronic, Optical and Magnetic Materials
-
dc.title
Multiscale FEM for the Linear 2-D/1-D Problem of Eddy Currents in Thin Iron Sheets
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1
-
dc.description.endpage
12
-
dc.type.category
Original Research Article
-
tuw.container.volume
55
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
10
-
tuw.researchTopic.value
90
-
dcterms.isPartOf.title
IEEE Transactions on Magnetics
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publisher.doi
10.1109/tmag.2018.2879030
-
dc.identifier.eissn
1941-0069
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0002-0395-629X
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
2020
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.orcid
0000-0002-0395-629X
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing