<div class="csl-bib-body">
<div class="csl-entry">Herwanto, G. B., Quirchmayr, G., & Tjoa, A. M. (2022). From User Stories to Data Flow Diagrams for Privacy Awareness: A Research Preview. In <i>Requirements Engineering: Foundation for Software Quality: 28th International Working Conference, REFSQ 2022, Birmingham, UK, March 21–24, 2022, Proceedings</i> (pp. 148–155). https://doi.org/10.1007/978-3-030-98464-9_12</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142527
-
dc.description.abstract
[Context and otivation] The well-established Data Flow Diagrams (DFDs) have proven their value in the field of security and privacy for the realization of processes in models. However, the time and resources required to model the system with DFD, could slow down security and privacy threat analysis. [Question/problem] Despite the fact that information required for drawing DFD is available in the textual requirement such as user stories, the current approach to modeling the system using DFD is still done by form/questionnaires or manually drawing the diagram. [Principal ideas/results] This study proposes a natural language processing (NLP) model that generates DFD automatically from well-formed user stories. We also detect the presence of personal data in user stories by employing Named Entity Recognition, which allows the personal data to be highlighted in DFD. Our preliminary results show that our model can automatically generate a DFD that highlights the presence of personal data. Finally, the DFD could be expanded to a Privacy-Aware DFD, which incorporates privacy checks into the DFD. [Contribution] This is the first attempt at automatically transforming user stories into DFD using an NLP approach. The automatic approach may alleviate the burden placed on privacy analysts during the initial stages of threat modeling or eliciting privacy requirements.
en
dc.language.iso
en
-
dc.subject
User stories
en
dc.subject
Data flow diagram
en
dc.subject
Privacy threat modeling
en
dc.subject
Natural language processing
en
dc.title
From User Stories to Data Flow Diagrams for Privacy Awareness: A Research Preview
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Vienna, Austria
-
dc.relation.isbn
978-3-030-98463-2
-
dc.description.startpage
148
-
dc.description.endpage
155
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Requirements Engineering: Foundation for Software Quality: 28th International Working Conference, REFSQ 2022, Birmingham, UK, March 21–24, 2022, Proceedings
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1007/978-3-030-98464-9_12
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0003-2998-742X
-
tuw.event.name
28th International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2022)
en
tuw.event.startdate
21-03-2022
-
tuw.event.enddate
24-03-2022
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
GB
-
tuw.event.presenter
Herwanto, Guntur Budi
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0002-8295-9252
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering