<div class="csl-bib-body">
<div class="csl-entry">Fichte, J. K., Gaggl, S. A., Hecher, M., & Rusovac, D. (2022). IASCAR: Incremental Answer Set Counting by Anytime Refinement. In <i>Logic Programming and Nonmonotonic Reasoning</i> (pp. 217–230). Springer. http://hdl.handle.net/20.500.12708/142530</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142530
-
dc.description.abstract
Answer set programming (ASP) is a popular declarative programming paradigm with various applications. Programs can easily have so many answer sets that they cannot be enumerated in practice, but counting still allows to quantify solution spaces. If one counts under assumptions on literals, one obtains a tool to comprehend parts of the solution space, so called answer set navigation. But navigating through parts of the solution space requires counting many times, which is expensive in theory. There, knowledge compilation compiles instances into representations on which counting works in polynomial time. However, these techniques exist only for CNF formulas and compiling ASP programs into CNF formulas can introduce an exponential overhead. In this paper, we introduce a technique to iteratively count answer sets under assumptions on knowledge compilations of CNFs that encode supported models. Our anytime technique uses the principle of inclusion-exclusion to systematically improve bounds by over- and undercounting. In a preliminary empirical analysis we demonstrate promising results. After compiling the input (offline phase) our approach quickly (re)counts.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
ASP
en
dc.subject
Answer set counting
en
dc.subject
Knowledge compilation
en
dc.title
IASCAR: Incremental Answer Set Counting by Anytime Refinement
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.relation.isbn
978-3-031-15707-3
-
dc.relation.doi
10.1007/978-3-031-15707-3
-
dc.description.startpage
217
-
dc.description.endpage
230
-
dc.relation.grantno
P32830-N
-
dc.relation.grantno
ICT19-065
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Logic Programming and Nonmonotonic Reasoning
-
tuw.container.volume
13461
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham, Switzerland
-
tuw.project.title
Hybrid Parameterized Problem Solving in Practice
-
tuw.project.title
Revealing and Utilizing the Hidden Structure for Solving Hard Problems in AI
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0000-0002-8681-7470
-
tuw.author.orcid
0000-0003-0131-6771
-
tuw.author.orcid
0000-0002-3172-5827
-
tuw.event.name
LPNMR 2022: 16th International Conference on Logic Programming and Non-monotonic Reasoning
en
dc.description.sponsorshipexternal
DFG
-
dc.description.sponsorshipexternal
BMBF
-
dc.description.sponsorshipexternal
FWF
-
dc.relation.grantnoexternal
Grant TRR 248 project ID 389792660
-
dc.relation.grantnoexternal
Grant 01IS20056_NAVAS
-
dc.relation.grantnoexternal
Y698
-
tuw.event.startdate
05-09-2022
-
tuw.event.enddate
09-09-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Genua
-
tuw.event.country
IT
-
tuw.event.presenter
Hecher, Markus
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E184 - Institut für Informationssysteme
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.orcid
0000-0002-8681-7470
-
crisitem.author.orcid
0000-0003-0131-6771
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds