<div class="csl-bib-body">
<div class="csl-entry">Nixdorf, S., Zhang, M., Ansari, F., & Grosse, E. H. (2022). Reciprocal Learning in Production and Logistics. In <i>10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022</i> (pp. 854–859). International Federation of Automatic Control ; Elsevier. https://doi.org/10.1016/j.ifacol.2022.09.519</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/142548
-
dc.description.abstract
Integration of AI technologies and learnable systems in production and logistics transforms the concepts of work organization and task assignments to human and machine agents. Thus, the question arises of what intelligent machines and human workers may be able to achieve as teammates. One answer may be guiding and training the workforce at the workplace to cope with emerging skill mismatches, emphasized by concepts of work-based learning. The extension of cyber-physical production systems towards becoming human-centered and social systems enabling human-machine interaction, creates opportunities for human-machine symbiosis by complementing each other's strengths. In this way, the concept of “Reciprocal Learning” (RL) between humans and intelligent machines has emerged, which is still rather ambiguous and lacks a profound knowledge base. Especially in production and logistics, literature is fragmented. Hence, the objective of this paper is to conduct a systematic literature review to elicit and cluster the knowledge base in RL represented by adjacent interdisciplinary fields of research, such as social and computer sciences. This work contributes to the literature by developing a comprehensive knowledge base on the concept of RL enabling to pursue future research directions towards the realization of human-machine symbiosis through RL in production and logistics.
en
dc.language.iso
en
-
dc.relation.ispartofseries
IFAC-PapersOnLine
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
Human-Machine Symbiosis
en
dc.subject
Industry 4.0
en
dc.subject
Reciprocal Learning
en
dc.subject
Work-Based Learning
en
dc.title
Reciprocal Learning in Production and Logistics
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.contributor.affiliation
Saarland University, Germany
-
dc.contributor.affiliation
Fraunhofer Austria, Austria
-
dc.contributor.affiliation
Saarland University, Germany
-
dc.relation.issn
2405-8971
-
dc.description.startpage
854
-
dc.description.endpage
859
-
dc.rights.holder
2022 The Authors
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2405-8963
-
tuw.booktitle
10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022
-
tuw.container.volume
55
-
tuw.book.ispartofseries
IFAC-PapersOnLine
-
tuw.relation.publisher
International Federation of Automatic Control ; Elsevier
-
tuw.researchTopic.id
I6a
-
tuw.researchTopic.name
Digital Transformation in Manufacturing
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E330-02-1 - Forschungsgruppe Smart and Knowledge Based Maintenance
-
tuw.publisher.doi
10.1016/j.ifacol.2022.09.519
-
dc.identifier.libraryid
AC17203742
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0001-9407-0058
-
tuw.author.orcid
0000-0003-4523-0267
-
tuw.author.orcid
0000-0002-2705-0396
-
tuw.author.orcid
0000-0001-6299-1282
-
dc.rights.identifier
CC BY-NC-ND 4.0
en
dc.rights.identifier
CC BY-NC-ND 4.0
de
tuw.event.name
10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022
en
tuw.event.startdate
22-06-2022
-
tuw.event.enddate
24-06-2022
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Nantes
-
tuw.event.country
FR
-
tuw.event.presenter
Nixdorf, Steffen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
30
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
item.openairetype
conference paper
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.dept
Saarland University
-
crisitem.author.dept
E330-06 - Forschungsbereich Produktions- und Instandhaltungsmanagement
-
crisitem.author.dept
Saarland University
-
crisitem.author.orcid
0000-0001-9407-0058
-
crisitem.author.orcid
0000-0002-2705-0396
-
crisitem.author.orcid
0000-0001-6299-1282
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften