<div class="csl-bib-body">
<div class="csl-entry">Grass, D., Uecker, H., & Upmann, T. (2019). Optimal fishery with coastal catch. <i>Natural Resource Modeling</i>, <i>32</i>(4), Article e12235. https://doi.org/10.1111/nrm.12235</div>
</div>
-
dc.identifier.issn
0890-8575
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/143069
-
dc.description.abstract
In many spatial resource models, it is assumed that an
agent is able to harvest the resource over the complete
spatial domain. However, agents frequently only have
access to a resource at particular locations at which a
moving biomass, such as fish or game, may be caught or
hunted. Here, we analyze an infinite time‐horizon
optimal control problem with boundary harvesting and
(systems of) parabolic partial differential equations as
state dynamics. We formally derive the associated
canonical system, consisting of a forward-backward
diffusion system with boundary controls, and numerically
compute the canonical steady states and the
optimal time‐dependent paths, and their dependence
on parameters. We start with some one‐species fishing
models, and then extend the analysis to a predator-prey
model of the Lotka-Volterra type. The models are rather
generic, and our methods are quite general, and thus
should be applicable to large classes of structurally
similar bioeconomic problems with boundary controls.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
Natural Resource Modeling
-
dc.subject
Modeling and Simulation
-
dc.subject
Environmental Science (miscellaneous)
-
dc.subject
infinite time horizon
-
dc.subject
bioeconomics
-
dc.subject
bistable model
-
dc.subject
optimal boundary control
-
dc.subject
optimal harvesting
-
dc.subject
Pontryagin´s maximum principle
-
dc.subject
predator-prey model
-
dc.title
Optimal fishery with coastal catch
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
32
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.value
80
-
tuw.researchTopic.value
20
-
dcterms.isPartOf.title
Natural Resource Modeling
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
tuw.publisher.doi
10.1111/nrm.12235
-
dc.identifier.articleid
e12235
-
dc.identifier.eissn
1939-7445
-
dc.description.numberOfPages
32
-
tuw.author.orcid
0000-0003-1378-5209
-
tuw.author.orcid
0000-0001-7804-7982
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
5020
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.grantfulltext
restricted
-
crisitem.author.dept
E105-03 - Forschungsbereich Ökonomie
-
crisitem.author.parentorg
E105 - Institut für Stochastik und Wirtschaftsmathematik