<div class="csl-bib-body">
<div class="csl-entry">Rezqita, A., Vasilchina, H., Hamid, R., Sauer, M., Foelske-Schmitz, A., Täubert, C., & Kronberger, H. (2019). Silicon/Mesoporous Carbon (Si/MC) Derived from Phenolic Resin for High Energy Anode Materials for Li-ion Batteries: Role of HF Etching and Vinylene Carbonate (VC) Additive. <i>Batteries</i>, <i>5</i>(1), 11. https://doi.org/10.3390/batteries5010011</div>
</div>
-
dc.identifier.issn
2313-0105
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/143344
-
dc.description.abstract
Silicon/mesoporous carbon (Si/MC) composites with optimum Si content, in which the volumetric energy density would be maximized, while volume changes would be minimized, have been developed. The composites were prepared by dispersing Si nanoparticles in a phenolic resin as a carbon source, subsequent carbonization, and etching with hydrofluoric acid (HF). Special attention was paid to understanding the role of HF etching as post-treatment to provide additional void spaces in the composites. The etching process was shown to reduce the SiO2 native layer on the Si nanoparticles, resulting in increased porosity in comparison to the non-etched composite material. For cell optimization, vinylene carbonate (VC) was employed as an electrolyte additive to build a stable solid electrolyte interphase (SEI) layer on the electrode. The composition of the SEI layer on Si/MC electrodes, cycled with and without VC-containing electrolytes for several cycles, was then comprehensively investigated by using ex-situ XPS. The SEI layers on the electrodes working with VC-containing electrolyte were more stable than those in configurations without VC; this explains why our sample with VC exhibits lower irreversible capacity losses after several cycles. The optimized Si/MC composites exhibit a reversible capacity of ~800 mAhg−1 with an average coulombic efficiency of ~99 % over 400 cycles at C/10.
en
dc.language.iso
en
-
dc.relation.ispartof
Batteries
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Energy Engineering and Power Technology
-
dc.subject
Electrochemistry
-
dc.title
Silicon/Mesoporous Carbon (Si/MC) Derived from Phenolic Resin for High Energy Anode Materials for Li-ion Batteries: Role of HF Etching and Vinylene Carbonate (VC) Additive
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
11
-
dc.type.category
Original Research Article
-
tuw.container.volume
5
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
M1
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
M7
-
tuw.researchTopic.name
Surfaces and Interfaces
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Special and Engineering Materials
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
20
-
dcterms.isPartOf.title
Batteries
-
tuw.publication.orgunit
E164-04-2 - Forschungsgruppe Elektrochemische Methoden und Korrosion
-
tuw.publication.orgunit
E057E - Fachbereich Analytical Instrumentation Center
-
tuw.publisher.doi
10.3390/batteries5010011
-
dc.identifier.eissn
2313-0105
-
dc.description.numberOfPages
12
-
wb.sci
true
-
wb.sciencebranch
Chemie
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.oefos
1030
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Austrian Institute of Technology
-
crisitem.author.dept
E057-05 - Fachbereich Analytical Instrumentation Center
-
crisitem.author.dept
E057-05 - Fachbereich Analytical Instrumentation Center
-
crisitem.author.dept
E164 - Institut für Chemische Technologien und Analytik