<div class="csl-bib-body">
<div class="csl-entry">Liu, H., Hille, C., Haller, A., Kumar, R., Pantel, K., & Hirtz, M. (2019). Highly efficient capture of circulating tumor cells by microarray in a microfluidic device. <i>FASEB Journal</i>, <i>33</i>(S1). https://doi.org/10.1096/fasebj.2019.33.1_supplement.lb230</div>
</div>
-
dc.identifier.issn
0892-6638
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/143595
-
dc.description.abstract
We established a versatile microarray-based platform that is able to capture single target cell from large background populations. To show the efficacy of the device, we consider the challenging application of detecting circulating tumor cells (CTCs) - where the target cell appears in a concentration of about one cell in a billion. The cells were incubated with a biotinylated antibody cocktail, targeted cells are extracted on a streptavidin microarray in a herringbone design microfluidic chip. The accessibility to the captured target cell on our device facilitates subsequent recovery of the targets for further analysis. Our previous results (Brinkmann et al., 2015) have shown that analyzing blood samples from cancer patients with our platform reaches, and partly outreaches, gold standard performance, demonstrating feasibility for clinical application. Currently, we aim to optimize the design of our device to further increase the capturing rate. We tried 3 different herringbone designs of our microfluidic chips (which we will refer to as the HA, HB and HC chips), 3 different patterns of streptavidin depositions (dots with a pitch of 25 μm, 50 μm, and a homogenous coating). The combination of 50 μm pitch dots, the HC chip showed the highest capturing rate. In the viability test, 90% tumor cells were alive after capturing. Furthermore, we can easily open the PDMS cap to access the alive tumor cells, which allows us to do further downstream analysis. Our device allows clinical researchers to freely choose the desired antibody and detect different rare bio-targets. This facilitates virtually arbitrary capturing of target species and therefore a wide spread application in the biomedical sciences.
en
dc.language.iso
en
-
dc.publisher
WILEY
-
dc.relation.ispartof
FASEB Journal
-
dc.subject
Biotechnology
en
dc.subject
Biochemistry
en
dc.subject
Molecular Biology
en
dc.subject
Genetics
en
dc.title
Highly efficient capture of circulating tumor cells by microarray in a microfluidic device
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
33
-
tuw.container.issue
S1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
FASEB Journal
-
tuw.publication.orgunit
E366-01 - Forschungsbereich Mikro- und Nanosensorik
-
tuw.publisher.doi
10.1096/fasebj.2019.33.1_supplement.lb230
-
dc.identifier.eissn
1530-6860
-
dc.description.numberOfPages
1
-
wb.sci
true
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.facultyfocus
Mikro- und Nanoelektronik
de
wb.facultyfocus
Micro- and Nanoelectronics
en
wb.facultyfocus.faculty
E350
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
crisitem.author.dept
E366 - Institut für Sensor- und Aktuatorsysteme
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik