<div class="csl-bib-body">
<div class="csl-entry">Piller, M., Luhmann, N., Chien, M.-H., & Schmid, S. (2019). Nanoelectromechanical infrared detector. In O. Mitrofanov (Ed.), <i>Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019</i> (pp. 11088021–11088027). https://doi.org/10.1117/12.2528416</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/143611
-
dc.description.abstract
The sensitive detection of infrared (IR) radiation is a essential task in today's modern world. The sensitivity of the state-of-the-art uncooled thermal infrared detectors is still several orders of magnitude above the fundamental photon noise limit. Thermal detectors based on temperature sensitive micro- and nanomechanical resonators are a promising approach to obtain improved thermal IR detectors. Here, we present an uncooled infrared detector based on a 1 mm×1 mm large nanoelectromechanical drum resonator made of 50 nm thick low-stress silicon nitride (SiN). The detector features a titanium nitride absorber with an absorptivity of ∼30% over the entire mid-IR range. The detector drum is driven at its resonance frequency by means of a phase-locked loop. Absorbed IR radiation results in an observable detuning of the drum's oscillation frequency. We measured an Allan deviation of σA = 5.5 × 10−7 at room temperature at a noise bandwidth of 25 Hz. With a responsivity of R = 343 W−1 this results in a sensitivity defined as noise equivalent power (NEP) of NEP = 320 pW/rtHz for an IR beam at a wavelength of 9.5 µm. For this measurement, the IR beam focus spot diameter was equal to the drum size. The drum's responsivity improves by a factor of ten for a focal spot size smaller than ∼ 100 μm. For smaller spots the responsivity remains constant. Based on this analysis we predict a sensitivity of ∼ 30 pW/rtHz for an IR spot size smaller than 100 μm. The detector can be improved further by e.g. optimizing the tensile pre-stress to a lower value or by improving the absorptivity.
en
dc.relation.ispartofseries
Proceedings of SPIE
-
dc.title
Nanoelectromechanical infrared detector
-
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019
-
dc.relation.issn
0277-786X
-
dc.description.startpage
11088021
-
dc.description.endpage
11088027
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1996-756X
-
tuw.booktitle
Optical Sensing, Imaging, and Photon Counting: From X-Rays to THz 2019
-
tuw.container.volume
11088
-
tuw.book.ispartofseries
Proceedings of SPIE
-
tuw.researchTopic.id
I8
-
tuw.researchTopic.id
M7
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.name
Sensor Systems
-
tuw.researchTopic.name
Special and Engineering Materials
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.value
25
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
35
-
tuw.publication.orgunit
E366-01 - Forschungsbereich Mikro- und Nanosensorik
-
tuw.publisher.doi
10.1117/12.2528416
-
dc.description.numberOfPages
7
-
tuw.event.name
SPIE NANOSCIENCE + ENGINEERING
-
tuw.event.startdate
11-08-2019
-
tuw.event.enddate
15-08-2019
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
San Diego
-
tuw.event.country
US
-
tuw.event.presenter
Piller, Markus
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.facultyfocus
Mikro- und Nanoelektronik
de
wb.facultyfocus
Micro- and Nanoelectronics
en
wb.facultyfocus.faculty
E350
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E366-01 - Forschungsbereich Mikro- und Nanosensorik
-
crisitem.author.dept
E366-01 - Forschungsbereich Mikro- und Nanosensorik
-
crisitem.author.dept
E366-01 - Forschungsbereich Mikro- und Nanosensorik
-
crisitem.author.dept
E366-01 - Forschungsbereich Mikro- und Nanosensorik