<div class="csl-bib-body">
<div class="csl-entry">Kindermann, P., Kobourov, S., Löffler, M., Nöllenburg, M., Schulz, A., & Vogtenhuber, B. (2019). Lombardi drawings of knots and links. <i>Journal of Computational Geometry</i>, <i>10</i>(1), 444–476. https://doi.org/10.20382/jocg.v10i1</div>
</div>
-
dc.identifier.issn
0218-1959
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/143670
-
dc.description.abstract
Knot and link diagrams are projections of one or more 3-dimensional simple
closed curves into lR2, such that no more than two points project to the same point in lR2.
These diagrams are drawings of 4-regular plane multigraphs. Knots are typically smooth
curves in lR3, so their projections should be smooth curves in lR2 with good continuity
and large crossing angles: exactly the properties of Lombardi graph drawings (de ned by
circular-arc edges and perfect angular resolution).
We show that several knots do not allow crossing-minimal plane Lombardi drawings.
On the other hand, we identify a large class of 4-regular plane multigraphs that do have plane
Lombardi drawings. We then study two relaxations of Lombardi drawings and show that
every knot admits a crossing-minimal plane 2-Lombardi drawing (where edges are composed
of two circular arcs). Further, every knot is near-Lombardi, that is, it can be drawn as a
plane Lombardi drawing when relaxing the angular resolution requirement by an arbitrary
small angular o set ", while maintaining a 180 angle between opposite edges.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Computational Geometry
-
dc.title
Lombardi drawings of knots and links
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
University of Würzburg, Germany
-
dc.contributor.affiliation
Arizona State University, United States of America (the)
-
dc.contributor.affiliation
Utrecht University, Netherlands (the)
-
dc.contributor.affiliation
University of Hagen, Germany
-
dc.contributor.affiliation
Graz University of Technology, Austria
-
dc.description.startpage
444
-
dc.description.endpage
476
-
dc.type.category
Original Research Article
-
tuw.container.volume
10
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Computational Geometry
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.20382/jocg.v10i1
-
dc.identifier.eissn
1793-6357
-
dc.description.numberOfPages
33
-
tuw.author.orcid
0000-0001-5764-7719
-
tuw.author.orcid
0000-0002-0477-2724
-
tuw.author.orcid
0000-0003-0454-3937
-
tuw.author.orcid
0000-0002-7166-4467
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Logic and Computation (LC)
de
wb.facultyfocus
Logic and Computation (LC)
en
wb.facultyfocus.faculty
E180
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
University of Würzburg
-
crisitem.author.dept
Arizona State University
-
crisitem.author.dept
Utrecht University
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity