<div class="csl-bib-body">
<div class="csl-entry">Gambi, J. M., Garcia del Pinto, M. L., Mosser, J., & Weinmüller, E. (2019). Numerical Approach for the Computation of Preliminary Post-Newtonian Corrections for Laser Links in Space. <i>International Journal of Aerospace Engineering</i>, <i>2019</i>, 1–7. https://doi.org/10.1155/2019/3723018</div>
</div>
-
dc.identifier.issn
1687-5966
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/143799
-
dc.description.abstract
Two systems of Earth-centered inertial Newtonian orbital equations for a spherical Earth and three systems of post-Newtonian nonlinear equations, derived from the second post-Newtonian approximation to the Earth Schwarzschild field, are used to carry out a performance analysis of a numerical procedure based on the Dormand-Prince method for initial value problems in ordinary differential equations. This procedure provides preliminary post-Newtonian corrections to the Newtonian trajectories of middle-size space objects with respect to space-based acquisition, pointing, and tracking laser systems, and it turns out to be highly efficient. In fact, we can show that running the standard adaptive ode45 MATLAB routine with the absolute and relative tolerance, TOLa = 10−16 and TOLr = 10−13, respectively, provides corrections that are final within the eclipses caused by the Earth and close to final during the noneclipse phases. These corrections should be taken into account to increase the pointing accuracy in implementing the space-to-space laser links required for ablation of designated objects or communications between space terminals.
en
dc.language.iso
en
-
dc.publisher
HINDAWI LTD
-
dc.relation.ispartof
International Journal of Aerospace Engineering
-
dc.subject
Aerospace Engineering
-
dc.title
Numerical Approach for the Computation of Preliminary Post-Newtonian Corrections for Laser Links in Space
-
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1
-
dc.description.endpage
7
-
dc.type.category
Original Research Article
-
tuw.container.volume
2019
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.value
70
-
tuw.researchTopic.value
30
-
dcterms.isPartOf.title
International Journal of Aerospace Engineering
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1155/2019/3723018
-
dc.identifier.eissn
1687-5974
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0002-0579-6314
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.openairetype
Artikel
-
item.openairetype
Article
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing