<div class="csl-bib-body">
<div class="csl-entry">Schmitt, R., Kubicek, M., Sediva, E., Trassin, M., Weber, M. C., Rossi, A., Hutter, H., Kreisel, J., Fiebig, M., & Rupp, J. L. M. (2019). Accelerated Ionic Motion in Amorphous Memristor Oxides for Nonvolatile Memories and Neuromorphic Computing. <i>Advanced Functional Materials</i>, <i>29</i>(5), Article 1804782. https://doi.org/10.1002/adfm.201804782</div>
</div>
-
dc.identifier.issn
1616-301X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/143826
-
dc.description.abstract
Memristive devices based on mixed ionic–electronic resistive switches have an enormous potential to replace today's transistor-based memories and Von Neumann computing architectures thanks to their ability for nonvolatile information storage and neuromorphic computing. It still remains unclear however how ionic carriers are propagated in amorphous oxide films at high local electric fields. By using memristive model devices based on LaFeO₃ with either amorphous or epitaxial nanostructures, we engineer the structural local bonding units and increase the oxygen-ionic diffusion coefficient by one order of magnitude for the amorphous oxide, affecting the resistive switching operation. We show that only devices based on amorphous LaFeO₃ films reveal memristive behavior due to their increased oxygen vacancy concentration. We achieved stable resistive switching with switching times down to microseconds and confirm that it is predominantly the oxygen-ionic diffusion character and not electronic defect state changes that modulate the resistive switching device response. Ultimately, these results show that the local arrangement of structural bonding units in amorphous perovskite films at room temperature can be used to largely tune the oxygen vacancy (defect) kinetics for resistive switches (memristors) that are both theoretically challenging to predict and promising for future memory and neuromorphic computing applications.
en
dc.language.iso
en
-
dc.publisher
WILEY-V C H VERLAG GMBH
-
dc.relation.ispartof
Advanced Functional Materials
-
dc.subject
Condensed Matter Physics
en
dc.subject
Electronic, Optical and Magnetic Materials
en
dc.subject
Biomaterials
en
dc.subject
Electrochemistry
en
dc.title
Accelerated Ionic Motion in Amorphous Memristor Oxides for Nonvolatile Memories and Neuromorphic Computing
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
29
-
tuw.container.issue
5
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Advanced Functional Materials
-
tuw.publication.orgunit
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie
-
tuw.publication.orgunit
E164-04-3 - Forschungsgruppe Festkörperionik
-
tuw.publisher.doi
10.1002/adfm.201804782
-
dc.identifier.articleid
1804782
-
dc.identifier.eissn
1616-3028
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0002-7564-2505
-
tuw.author.orcid
0000-0001-6623-9805
-
tuw.author.orcid
0000-0001-7160-0108
-
wb.sci
true
-
wb.sciencebranch
Chemie
-
wb.sciencebranch.oefos
1040
-
wb.facultyfocus
Chemistry and Technology of Materials
de
wb.facultyfocus
Chemistry and Technology of Materials
en
wb.facultyfocus.faculty
E150
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E164-04-3 - Forschungsgruppe Festkörperionik
-
crisitem.author.dept
E164-01-2 - Forschungsgruppe Oberflächen-, Spurenanalytik und Chemometrie