<div class="csl-bib-body">
<div class="csl-entry">Anderson, B. D. O., Deistler, M., & Dufour, J.-M. (2019). On the Sensitivity of Granger Causality to Errors-In-Variables, Linear Transformations and Subsampling. <i>Journal of Time Series Analysis</i>, <i>40</i>(1), 102–123. https://doi.org/10.1111/jtsa.12430</div>
</div>
-
dc.identifier.issn
0143-9782
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/143885
-
dc.description.abstract
This article studies the sensitivity of Granger causality to the addition of noise, the introduction of subsampling, and the application of causal invertible filters to weakly stationary processes. Using canonical spectral factors and Wold decompositions, we give general conditions under which additive noise or filtering distorts Granger-causal properties by inducing (spurious) Granger causality, as well as conditions under which it does not. For the errors-in-variables case, we give a continuity result, which implies that: a ‘small’ noise-to-signal ratio entails ‘small’ distortions in Granger causality. On filtering, we give general necessary and sufficient conditions under which ‘spurious’ causal relations between (vector) time series are not induced by linear transformations of the variables involved. This also yields transformations (or filters) which can eliminate Granger causality from one vector to another one. In a number of cases, we clarify results in the existing literature, with a number of calculations streamlining some existing approaches.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Time Series Analysis
-
dc.subject
Granger causality
en
dc.subject
sensitivity
en
dc.subject
signal-to-noise ratio
en
dc.subject
errors-in-variables
en
dc.subject
measurement errors
en
dc.subject
filtering
en
dc.subject
subsampling
en
dc.title
On the Sensitivity of Granger Causality to Errors-In-Variables, Linear Transformations and Subsampling
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Hangzhou Dianzi University, China
-
dc.contributor.affiliation
McGill University, Canada
-
dc.description.startpage
102
-
dc.description.endpage
123
-
dcterms.dateSubmitted
2017-04-12
-
dc.type.category
Original Research Article
-
tuw.container.volume
40
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
dcterms.isPartOf.title
Journal of Time Series Analysis
-
tuw.publication.orgunit
E105-02 - Forschungsbereich Ökonometrie und Systemtheorie
-
tuw.publisher.doi
10.1111/jtsa.12430
-
dc.date.onlinefirst
2018-09-23
-
dc.identifier.eissn
1467-9892
-
dc.description.numberOfPages
22
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik