<div class="csl-bib-body">
<div class="csl-entry">Bazhenov, N., Benavente-Fokina, E., Rossegger, D., & San Mauro, L. F. (2019). Degrees of bi-embeddable categoricity of equivalence structures. <i>Archive for Mathematical Logic</i>, <i>58</i>, 543–563. https://doi.org/10.1007/s00153-018-0650-3</div>
</div>
-
dc.identifier.issn
0933-5846
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/143955
-
dc.description.abstract
We study the algorithmic complexity of embeddings between bi-embeddable equivalence structures. We define the notions of computable bi-embeddable categoricity, (relative) Δ⁰α bi-embeddable categoricity, and degrees of bi-embeddable categoricity. These notions mirror the classical notions used to study the complexity of isomorphisms between structures. We show that the notions of Δ⁰α bi-embeddable categoricity and relative Δ⁰α bi-embeddable categoricity coincide for equivalence structures for α = 1, 2, 3. We also prove that computable equivalence structures have degree of bi-embeddable categoricity 0, 0', or 0''. We furthermore obtain results on the index set complexity of computable equivalence structure with respect to bi-embeddability.
en
dc.language.iso
en
-
dc.relation.ispartof
Archive for Mathematical Logic
-
dc.subject
Computable categoricity
en
dc.subject
Bi-embeddability
en
dc.subject
degrees of categoricity
en
dc.subject
Degrees of bi-embeddable categoricity
en
dc.title
Degrees of bi-embeddable categoricity of equivalence structures
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
Sobolev Institute of Mathematics, Russian Federation (the)
-
dc.description.startpage
543
-
dc.description.endpage
563
-
dc.type.category
Original Research Article
-
tuw.container.volume
58
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Archive for Mathematical Logic
-
tuw.publication.orgunit
E104-02 - Forschungsbereich Computational Logic
-
tuw.publisher.doi
10.1007/s00153-018-0650-3
-
dc.identifier.eissn
1432-0665
-
dc.description.numberOfPages
21
-
tuw.author.orcid
0000-0002-4598-458X
-
tuw.author.orcid
0000-0003-3494-9049
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Sobolev Institute of Mathematics
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.orcid
0000-0002-4598-458X
-
crisitem.author.orcid
0000-0003-3494-9049
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie