<div class="csl-bib-body">
<div class="csl-entry">Roccon, A., Zonta, F., & Soldati, A. (2019). Turbulent drag reduction by compliant lubricating layer. <i>Journal of Fluid Mechanics</i>, <i>863</i>, Article R1. https://doi.org/10.1017/jfm.2019.8</div>
</div>
-
dc.identifier.issn
0022-1120
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144010
-
dc.description.abstract
We propose a physically sound explanation for the drag reduction mechanism in a lubricated channel, a flow configuration in which an interface separates a thin layer of less-viscous fluid (viscosity η₁) from a main layer of a more-viscous fluid (viscosity η₂). To single out the effect of surface tension, we focus initially on two fluids having the same density and the same viscosity ( λ=η₁/η₂=1), and we lower the viscosity of the lubricating layer down to λ=η₁/η₂=0.25, which corresponds to a physically realizable experimental set-up consisting of light oil and water. A database comprising original direct numerical simulations of two-phase flow channel turbulence is used to study the physical mechanisms driving drag reduction, which we report between 20 and 30 percent. The maximum drag reduction occurs when the two fluids have the same viscosity ( λ=1 ), and corresponds to the relaminarization of the lubricating layer. Decreasing the viscosity of the lubricating layer ( λ<1 ) induces a marginally decreased drag reduction, but also helps sustaining strong turbulence in the lubricating layer. This led us to infer two different mechanisms for the two drag-reduced systems, each of which is ultimately controlled by the outcome of the competition between viscous, inertial and surface tension forces.
en
dc.language.iso
en
-
dc.publisher
CAMBRIDGE UNIV PRESS
-
dc.relation.ispartof
Journal of Fluid Mechanics
-
dc.subject
Mechanical Engineering
en
dc.subject
Mechanics of Materials
en
dc.subject
Condensed Matter Physics
en
dc.title
Turbulent drag reduction by compliant lubricating layer
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Short/Brief/Rapid Communication
-
tuw.container.volume
863
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
C2
-
tuw.researchTopic.name
Computational Fluid Dynamics
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Fluid Mechanics
-
tuw.publication.orgunit
E322-01 - Forschungsbereich Strömungsmechanik
-
tuw.publisher.doi
10.1017/jfm.2019.8
-
dc.identifier.articleid
R1
-
dc.identifier.eissn
1469-7645
-
dc.description.numberOfPages
11
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.oefos
2030
-
wb.facultyfocus
Energie und Umwelttechnik
de
wb.facultyfocus
Energy and Environmental Technology
en
wb.facultyfocus.faculty
E300
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_6501
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairetype
journal article
-
item.grantfulltext
none
-
crisitem.author.dept
E322-01 - Forschungsbereich Strömungsmechanik
-
crisitem.author.dept
E322-01 - Forschungsbereich Strömungsmechanik
-
crisitem.author.dept
E322 - Institut für Strömungsmechanik und Wärmeübertragung
-
crisitem.author.parentorg
E322 - Institut für Strömungsmechanik und Wärmeübertragung
-
crisitem.author.parentorg
E322 - Institut für Strömungsmechanik und Wärmeübertragung
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften