<div class="csl-bib-body">
<div class="csl-entry">Jech, M., El-Sayed, A.-M. B., Tyaginov, S., Shluger, A. L., & Grasser, T. (2019). Ab Initio treatment of silicon-hydrogen bond rupture at Si/SiO₂ interfaces. <i>Physical Review B</i>, <i>100</i>(19), Article 195302. https://doi.org/10.1103/physrevb.100.195302</div>
</div>
-
dc.identifier.issn
2469-9950
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144078
-
dc.description.abstract
Even after more than 50 years of development, a major issue in silicon-based technology is the understanding of the Si/SiO₂ interface and its defects, particularly the unsaturated silicon dangling bonds which have to be passivated by hydrogen during fabrication. Although it is well known that hydrogen dissociation from an initially passivated interfacial Si dangling bond results in an electrically active defect, there is still no consensus on the actual microscopic Si–H bond-breaking mechanism, despite a significant research effort. The most thorough theoretical study in the field was published by Tuttle and Van de Walle 20 years ago. Although it was then suggested that the hydrogen dissociates most likely into a bond-center site, no clean argument for bond rupture could be given at that time. In order to take a fresh look at this highly important problem, we employ the latest ab initio methods available, including the method of well-tempered metadynamics and nudged-elastic-band calculations based on density functional theory (DFT). This allows us to study the interactions of a Si–H bond with its realistic environment in a three-dimensional Si/a–SiO₂ interface in considerable detail. Using classical force fields and well-tempered metadynamics in conjunction with DFT, we provide new insights into the dissociation kinetics. We find that one of the previously suggested dissociation paths only leads into a neutral, metastable state which would not facilitate bond dissociation. By sampling the configuration space in greater detail than ever before, we propose a trajectory whereby the H first moves towards an adjacent Si and in a second step relaxes into a configuration between the next-nearest Si–Si bond. The final statistical analysis on a large number of defects on this amorphous interface yields potential energy surfaces and barriers which are in excellent agreement with experimental values.
en
dc.language.iso
en
-
dc.relation.ispartof
Physical Review B
-
dc.subject
Condensed Matter
en
dc.subject
Materials & Applied Physics
en
dc.title
Ab Initio treatment of silicon-hydrogen bond rupture at Si/SiO₂ interfaces
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
University College London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.type.category
Review Article
-
tuw.container.volume
100
-
tuw.container.issue
19
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
Q4
-
tuw.researchTopic.id
Q3
-
tuw.researchTopic.name
Nanoelectronics
-
tuw.researchTopic.name
Quantum Modelling and Simulation
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
60
-
dcterms.isPartOf.title
Physical Review B
-
tuw.publication.orgunit
E360 - Institut für Mikroelektronik
-
tuw.publication.orgunit
E360-01 - Forschungsbereich Mikroelektronik
-
tuw.publisher.doi
10.1103/physrevb.100.195302
-
dc.identifier.articleid
195302
-
dc.identifier.eissn
2469-9969
-
dc.description.numberOfPages
11
-
tuw.author.orcid
0000-0003-3003-8168
-
wb.sci
true
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Nanotechnologie
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
2100
-
wb.facultyfocus
Mikro- und Nanoelektronik
de
wb.facultyfocus
Micro- and Nanoelectronics
en
wb.facultyfocus.faculty
E350
-
item.grantfulltext
restricted
-
item.languageiso639-1
en
-
item.openairetype
review article
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_dcae04bc
-
crisitem.author.dept
E360-01 - Forschungsbereich Mikroelektronik
-
crisitem.author.dept
E360-01 - Forschungsbereich Mikroelektronik
-
crisitem.author.dept
E360-01 - Forschungsbereich Mikroelektronik
-
crisitem.author.dept
University College London
-
crisitem.author.dept
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E360 - Institut für Mikroelektronik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik