<div class="csl-bib-body">
<div class="csl-entry">Amidei, J., Andrews, U., Piangiani, D., San Mauro, L. F., & Sorbi, A. (2019). Trial and error mathematics: Dialectical systems and completions of theories. <i>Journal of Logic and Computation</i>, <i>29</i>(1), 157–184. https://doi.org/10.1093/logcom/exy033</div>
</div>
-
dc.identifier.issn
0955-792X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144098
-
dc.description.abstract
This paper is part of a project that is based on the notion of a dialectical system, introduced by Magari as a way of capturing trial and error mathematics. In Amidei et al. (2016, Rev. Symb. Logic, 9, 1–26) and Amidei et al. (2016, Rev. Symb. Logic, 9, 299–324), we investigated the expressive and computational power of dialectical systems, and we compared them to a new class of systems, that of quasi-dialectical systems, that enrich Magari’s systems with a natural mechanism of revision. In the present paper we consider a third class of systems, that of p-dialectical systems, that naturally combine features coming from the two other cases. We prove several results about p-dialectical systems and the sets that they represent. Then we focus on the completions of first-order theories. In doing so, we consider systems with connectives, i.e. systems that encode the rules of classical logic. We show that any consistent system with connectives represents the completion of a given theory. We prove that dialectical and q-dialectical systems coincide with respect to the completions that they can represent. Yet, p-dialectical systems are more powerful; we exhibit a p-dialectical system representing a completion of Peano Arithmetic that is neither dialectical nor q-dialectical.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Logic and Computation
-
dc.subject
Dialectical system
en
dc.subject
q-dialectical system
en
dc.subject
p-dialectical system
en
dc.subject
completion
en
dc.title
Trial and error mathematics: Dialectical systems and completions of theories
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
The Open University, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Wisconsin–Madison, United States of America (the)
-
dc.contributor.affiliation
University of Siena, Italy
-
dc.contributor.affiliation
University of Siena, Italy
-
dc.description.startpage
157
-
dc.description.endpage
184
-
dc.type.category
Original Research Article
-
tuw.container.volume
29
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Logic and Computation
-
tuw.publication.orgunit
E104-02 - Forschungsbereich Computational Logic
-
tuw.publisher.doi
10.1093/logcom/exy033
-
dc.date.onlinefirst
2018-11-26
-
dc.identifier.eissn
1465-363X
-
dc.description.numberOfPages
28
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.openairetype
research article
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
The Open University
-
crisitem.author.dept
University of Wisconsin–Madison
-
crisitem.author.dept
University of Siena
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.dept
University of Siena
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie