<div class="csl-bib-body">
<div class="csl-entry">Wang, G., Ledwoch, A., Hasani, R. M., Grosu, R., & Brintrup, A. (2019). A generative neural network model for the quality prediction of work in progress products. <i>Applied Soft Computing</i>, <i>85</i>, Article 105683. https://doi.org/10.1016/j.asoc.2019.105683</div>
</div>
-
dc.identifier.issn
1568-4946
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144138
-
dc.description.abstract
One of the key challenges in manufacturing processes is improving the accuracy of quality monitoring and prediction. This paper proposes a generative neural network model for automatically predicting work-in-progress product quality. Our approach combines an unsupervised feature-extraction step with a supervised learning method. An autoencoding neural network is trained using raw manufacturing process data to extract rich information from production line recordings. Then, the extracted features are reformed as time-series and are fed into a multi-layer perceptron for predicting product quality. Finally, the outputs are decoded into a forecast quality measure. We evaluate the performance of the generative model on a case study from a powder metallurgy process. Our experimental results suggest that our method can precisely capture the defective products.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Applied Soft Computing
-
dc.subject
Software
en
dc.subject
Powder metallurgy
en
dc.subject
Autoencoder
en
dc.subject
Generative models
en
dc.subject
Quality prediction
en
dc.subject
Time-delayed neural networks
en
dc.title
A generative neural network model for the quality prediction of work in progress products
en
dc.type
Artikel
de
dc.type
Article
en
dc.type.category
Original Research Article
-
tuw.container.volume
85
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Applied Soft Computing
-
tuw.publication.orgunit
E191-01 - Forschungsbereich Cyber-Physical Systems
-
tuw.publisher.doi
10.1016/j.asoc.2019.105683
-
dc.identifier.articleid
105683
-
dc.identifier.eissn
1872-9681
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0002-4189-2434
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Computer Engineering (CE)
de
wb.facultyfocus
Computer Engineering (CE)
en
wb.facultyfocus.faculty
E180
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems
-
crisitem.author.dept
E191-01 - Forschungsbereich Cyber-Physical Systems