<div class="csl-bib-body">
<div class="csl-entry">Ansari, F., & Kohl, L. (2022). AI-Enhanced Maintenance for Building Resilience and Viability in Supply Chains. In A. Dolgui, D. Ivanov, & B. Sokolov (Eds.), <i>Supply Network Dynamics and Control</i> (Vol. 20, pp. 163–185). https://doi.org/10.1007/978-3-031-09179-7_8</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144321
-
dc.description.abstract
In the era of Industry 4.0, supply chain management still faces the challenge of operating with increasingly complex networks under high uncertainty. These uncertainties influence decision-making processes and change the balance in the supply chain. Enterprise, therefore, strives to enable data-driven decision-making by increasing the digitalization and intelligentization of their processes. Artificial Intelligence (AI) approaches in particular can reinforce enterprises to proactively respond to changes and problems in the supply chain at an early stage and thus plan ahead. Utilizing predictive analytics and semantic modeling may improve target performance metrics, increases flexibility, and enables the development of a resilient and viable supply chain. This chapter provides an AI-enhanced approach for integrative modeling and analysis of related Key Performance Indicators (KPIs) toward building resilience and viability in manufacturing and supply chains, aided by Dynamic Bayesian Networks (DBN).
en
dc.language.iso
en
-
dc.subject
Artificial intelligence
en
dc.subject
Bayesian networks
en
dc.subject
Efficiency
en
dc.subject
Maintenance
en
dc.subject
Resilience
en
dc.subject
Sustainability
en
dc.title
AI-Enhanced Maintenance for Building Resilience and Viability in Supply Chains
-
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.editoraffiliation
Department of Automation, Production and Computer Sciences, IMT Atlantique, LS2N-CNRS, Nantes, France
-
dc.contributor.editoraffiliation
Berlin School of Economics and Law, Germany
-
dc.contributor.editoraffiliation
St. Petersburg Institute for Informatics and Automation, Russian Federation (the)
-
dc.relation.isbn
978-3-031-09179-7
-
dc.relation.issn
2365-6395
-
dc.description.startpage
163
-
dc.description.endpage
185
-
dc.type.category
Edited Volume Contribution
-
dc.relation.eissn
2365-6409
-
tuw.booktitle
Supply Network Dynamics and Control
-
tuw.container.volume
20
-
tuw.book.ispartofseries
Springer Series in Supply Chain Management
-
tuw.researchTopic.id
I6a
-
tuw.researchTopic.id
E6
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Digital Transformation in Manufacturing
-
tuw.researchTopic.name
Sustainable Production and Technologies
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
30
-
tuw.publication.orgunit
E330-02-1 - Forschungsgruppe Smart and Knowledge Based Maintenance
-
tuw.publisher.doi
10.1007/978-3-031-09179-7_8
-
dc.description.numberOfPages
23
-
tuw.author.orcid
0000-0002-2705-0396
-
tuw.author.orcid
0000-0002-3019-4403
-
tuw.editor.orcid
0000-0003-0527-4716
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
30
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
item.openairetype
book part
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
crisitem.author.dept
E330-06 - Forschungsbereich Produktions- und Instandhaltungsmanagement
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.orcid
0000-0002-2705-0396
-
crisitem.author.orcid
0000-0002-3019-4403
-
crisitem.author.parentorg
E330 - Institut für Managementwissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften