<div class="csl-bib-body">
<div class="csl-entry">Pagani, S., Pudukotai Dinakarrao, S. M., Jantsch, A., & Henkel, J. (2018). Machine learning for power, energy, and thermal management on multi-core processors: A survey. <i>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</i>, <i>39</i>(1), 101–116. https://doi.org/10.1109/tcad.2018.2878168</div>
</div>
-
dc.identifier.issn
0278-0070
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144575
-
dc.description.abstract
Due to the high integration density and roadblock of voltage scaling, modern multi-core processors experience higher power densities than previous technology scaling nodes. When unattended, this issue might lead to temperature hot spots, that in turn may cause non-uniform aging, accelerate chip failure, impair reliability, and reduce the performance of the system. This paper presents an overview of several research efforts that propose to use machine learning techniques for power and thermal management on single-core and multi-core processors. Traditional power and thermal management techniques rely on a certain a-priori knowledge of the chip's thermal model, as well as information of the workloads/applications to be executed (e.g., transient and average power consumption). Nevertheless, these a-priori information is not always available, and even if it is, it cannot reflect the spatial and temporal uncertainties and variations that come from the environment, the hardware, or from the workloads/applications. Contrarily, techniques based on machine learning can potentially adapt to varying system conditions and workloads, learning from past events in order to improve themselves as the environment changes, resulting in improved management decisions.
en
dc.language.iso
en
-
dc.relation.ispartof
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
-
dc.subject
Electrical and Electronic Engineering
-
dc.subject
Software
-
dc.subject
Computer Graphics and Computer-Aided Design
-
dc.title
Machine learning for power, energy, and thermal management on multi-core processors: A survey.
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
101
-
dc.description.endpage
116
-
dc.type.category
Original Research Article
-
tuw.container.volume
39
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
-
tuw.publication.orgunit
E384-02 - Forschungsbereich Systems on Chip
-
tuw.publisher.doi
10.1109/tcad.2018.2878168
-
dc.identifier.eissn
1937-4151
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0002-5088-0347
-
tuw.author.orcid
0000-0003-2251-0004
-
wb.sci
true
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.facultyfocus
System- und Automatisierungstechnik
de
wb.facultyfocus
System and Automation Engineering
en
wb.facultyfocus.faculty
E350
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairetype
Artikel
-
item.openairetype
Article
-
item.languageiso639-1
en
-
crisitem.author.dept
E384 - Institut für Computertechnik
-
crisitem.author.dept
E384-02 - Forschungsbereich Systems on Chip
-
crisitem.author.orcid
0000-0003-2251-0004
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik