<div class="csl-bib-body">
<div class="csl-entry">Bodirsky, M., Evans, D., Kopatscher, M., & Pinsker, M. (2018). A counterexample to the reconstruction of ω-categorical structures from their endomorphism monoids. <i>Israel Journal of Mathematics</i>, <i>224</i>(1), 57–82. https://doi.org/10.1007/s11856-018-1645-9</div>
</div>
-
dc.identifier.issn
0021-2172
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144688
-
dc.description.abstract
We present an example of two countable ω-categorical structures, one of which has a finite relational language, whose endomorphism monoids are isomorphic as abstract monoids, but not as topological monoids—in other words, no isomorphism between these monoids is a homeomorphism. For the same two structures, the automorphism groups and polymorphism clones are isomorphic, but not topologically isomorphic. In particular, there exists a countable ω-categorical structure in a finite relational language which can neither be reconstructed up to first-order biinterpretations from its automorphism group, nor up to existential positive bi-interpretations from its endomorphism monoid, nor up to primitive positive bi-interpretations from its polymorphism clone.
en
dc.language.iso
en
-
dc.relation.ispartof
Israel Journal of Mathematics
-
dc.subject
General Mathematics
en
dc.title
A counterexample to the reconstruction of ω-categorical structures from their endomorphism monoids
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
TU Dresden, Germany
-
dc.contributor.affiliation
Imperial College London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.description.startpage
57
-
dc.description.endpage
82
-
dc.type.category
Original Research Article
-
tuw.container.volume
224
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Israel Journal of Mathematics
-
tuw.publication.orgunit
E192-05 - Forschungsbereich Theory and Logic
-
tuw.publisher.doi
10.1007/s11856-018-1645-9
-
dc.identifier.eissn
1565-8511
-
dc.description.numberOfPages
26
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
TU Dresden
-
crisitem.author.dept
Imperial College London
-
crisitem.author.dept
E104-01 - Forschungsbereich Algebra
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie