<div class="csl-bib-body">
<div class="csl-entry">Cibulka, R., Dontchev, A. L., Preininger, J., Veliov, V. M., & Roubal, T. (2018). Kantorovich-Type Theorems for Generalized Equations. <i>Journal of Convex Analysis</i>, <i>25</i>(2), 459–486. http://hdl.handle.net/20.500.12708/144705</div>
</div>
-
dc.identifier.issn
0944-6532
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144705
-
dc.description.abstract
We study convergence of the Newton method for solving generalized equations of the form $f(x)+F(x)\ni 0,$ where $f$ is a continuous but not necessarily smooth function and $F$ is a set-valued mapping with closed graph, both acting in Banach spaces. We present a Kantorovich-type theorem concerning r-linear convergence for a general algorithmic strategy covering both nonsmooth and smooth cases. Under various conditions we obtain higher-order convergence. Examples and computational experiments illustrate the theoretical results.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Convex Analysis
-
dc.subject
metric regularity
-
dc.subject
variational inequality
-
dc.subject
Newton's method
-
dc.subject
generalized equation
-
dc.subject
Kantorovich theorem
-
dc.subject
linear/superlinear/quadratic convergence.
-
dc.title
Kantorovich-Type Theorems for Generalized Equations
en
dc.type
Artikel
de
dc.type
Article
en
dc.contributor.affiliation
University of West Bohemia, Czechia
-
dc.description.startpage
459
-
dc.description.endpage
486
-
dc.type.category
Original Research Article
-
tuw.container.volume
25
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
dcterms.isPartOf.title
Journal of Convex Analysis
-
tuw.publication.orgunit
E105-04 - Forschungsbereich Variationsrechnung, Dynamische Systeme und Operations Research
-
dc.identifier.eissn
0944-6532
-
dc.description.numberOfPages
28
-
tuw.author.orcid
0000-0002-6137-1046
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Wirtschaftsmathematik und Stochastik
de
wb.facultyfocus
Mathematical Methods in Economics and Stochastics
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik