<div class="csl-bib-body">
<div class="csl-entry">Müllner, M. (2018). Solutions of an extended KdV equation describing single stationary waves with strong or weak downstream decay in turbulent open-channel flow. <i>ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK</i>, <i>98</i>(1), 7–30. https://doi.org/10.1002/zamm.201700040</div>
</div>
-
dc.identifier.issn
0044-2267
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144711
-
dc.description.abstract
The present problem was first studied by Schneider, JFM 726 (2013). An asymptotic analysis was performed for small slope of the plane channel bottom and slightly supercritical, fully-developed flow far upstream and far downstream. Turbulence modelling can be circumvented. The asymptotic analysis yields an extended Korteweg-de Vries (KdV) equation for the surface elevation. The stationary leading-order solutions for weak dissipation have the shape of solitons in inviscid flow. Stationary solitary waves are permitted only if the surface roughness is varied along the bottom. The particular example was examined where the bottom roughness in a region is larger by a constant in comparison with the roughness in fully-developed flow. This enlargement was considered as an eigenvalue to obtain solitary waves with strongly decaying elevations. In the present paper, the analysis is extended up to the second order to describe how the shape and the structure of the solitary waves is affected by the dissipation terms. In particular, the cases are considered when the enlargement of the bottom roughness differs from the eigenvalue. The surface elevation far downstream is then characterized by a long shallow tail that is tackled by means of matched asymptotic expansions. The required minimum enlargement of the roughness for the existence of solitary waves is given. The asymptotic solutions for the shape of the surface elevation, the height and location of the wave crest, and the eigenvalue are in good agreement with numerical results. The existence and shape of a novel kind of stationary solutions is also shown.
en
dc.description.sponsorship
Vereine, Stiftungen, Preise
-
dc.language.iso
en
-
dc.publisher
WILEY-V C H VERLAG GMBH
-
dc.relation.ispartof
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK
-
dc.subject
Applied Mathematics
en
dc.subject
Computational Mechanics
en
dc.subject
Near-critical turbulent flow
en
dc.subject
free-surface flow
en
dc.subject
Korteweg-de Vries equation
en
dc.subject
solitary waves
en
dc.title
Solutions of an extended KdV equation describing single stationary waves with strong or weak downstream decay in turbulent open-channel flow
en
dc.title.alternative
Solutions of an extended KdV equation describing single stationary waves
-
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
7
-
dc.description.endpage
30
-
dc.type.category
Original Research Article
-
tuw.container.volume
98
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
AIC Androsch International Management Consulting GmbH
Research on Fluid Mechaniks and Heat Transfer
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C2
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computational Fluid Dynamics
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
20
-
dcterms.isPartOf.title
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK
-
tuw.publication.orgunit
E322 - Institut für Strömungsmechanik und Wärmeübertragung
-
tuw.publisher.doi
10.1002/zamm.201700040
-
dc.identifier.eissn
1521-4001
-
dc.description.numberOfPages
24
-
wb.sci
true
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Numerische Ingenieursmethoden und IT gestütztes Engineering
de
wb.facultyfocus
Numerische Ingenieursmethoden und IT gestütztes Engineering
en
wb.facultyfocus.faculty
E300
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E322 - Institut für Strömungsmechanik und Wärmeübertragung
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften