<div class="csl-bib-body">
<div class="csl-entry">Meyerhenke, H., Nöllenburg, M., & Schulz, C. (2018). Drawing Large Graphs by Multilevel Maxent-Stress Optimization. <i>IEEE Transactions on Visualization and Computer Graphics</i>, <i>24</i>(5), 1814–1827. https://doi.org/10.1109/tvcg.2017.2689016</div>
</div>
-
dc.identifier.issn
1077-2626
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144735
-
dc.description.abstract
Drawing large graphs appropriately is an important step for the visual analysis of data from real-world networks. Here we present a novel multilevel algorithm to compute a graph layout with respect to the maxent-stress metric proposed by Gansner et al. (2013) that combines layout stress and entropy. As opposed to previous work, we do not solve the resulting linear systems of the maxent-stress metric with a typical numerical solver. Instead we use a simple local iterative scheme within a multilevel approach. To accelerate local optimization, we approximate long-range forces and use shared-memory parallelism. Our experiments validate the high potential of our approach, which is particularly appealing for dynamic graphs. In comparison to the previously best maxent-stress optimizer, which is sequential, our parallel implementation is on average 30 times faster already for static graphs (and still faster if executed on a single thread) while producing a comparable solution quality.
en
dc.language.iso
en
-
dc.relation.ispartof
IEEE Transactions on Visualization and Computer Graphics
-
dc.subject
Software
-
dc.subject
Computer Graphics and Computer-Aided Design
-
dc.subject
Optimization
-
dc.subject
Computer Vision and Pattern Recognition
-
dc.subject
Signal Processing
-
dc.subject
Computational modeling
-
dc.subject
Layout
-
dc.subject
Approximation algorithms
-
dc.subject
Force
-
dc.subject
Stress
-
dc.subject
Linear systems
-
dc.title
Drawing Large Graphs by Multilevel Maxent-Stress Optimization
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1814
-
dc.description.endpage
1827
-
dc.type.category
Original Research Article
-
tuw.container.volume
24
-
tuw.container.issue
5
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
IEEE Transactions on Visualization and Computer Graphics
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1109/tvcg.2017.2689016
-
dc.identifier.eissn
1941-0506
-
dc.description.numberOfPages
14
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Logic and Computation (LC)
de
wb.facultyfocus
Logic and Computation (LC)
en
wb.facultyfocus.faculty
E180
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity