<div class="csl-bib-body">
<div class="csl-entry">Meier, M., Jakub, Z., Balajka, J., Hulva, J., Bliem, R., Thakur, P. K., Lee, T.-L., Franchini, C., Schmid, M., Diebold, U., Allegretti, F., Duncan, D. A., & Parkinson, G. S. (2018). Probing the geometry of copper and silver adatoms on magnetite: quantitative experiment versus theory. <i>Nanoscale</i>, <i>10</i>(5), 2226–2230. https://doi.org/10.1039/c7nr07319d</div>
</div>
-
dc.identifier.issn
2040-3364
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144860
-
dc.description.abstract
Accurately modelling the structure of a catalyst is a fundamental pre-
requisite for correctly predicting reaction pathways, but a lack of
clear experimental benchmarks makes it di
ffi
cult to determine the
optimal theoretical approach. Here, we utilize the normal incidence
X-ray standing wave (NIXSW) technique to precisely determine the
three dimensional geometry of Ag
1
and Cu
1
adatoms on Fe
3
O
4
(001).
Both adatoms occupy bulk-continuation cation sites, but with a
markedly di
ff
erent height above the surface (0.43 ± 0.03 Å (Cu
1
)
and 0.96 ± 0.03 Å (Ag
1
)). HSE-based calculations accurately predict
the experimental geometry, but the more common PBE + U and
PBEsol + U approaches perform poorly.
en
dc.language.iso
en
-
dc.publisher
ROYAL SOC CHEMISTRY
-
dc.relation.ispartof
Nanoscale
-
dc.subject
General Materials Science
-
dc.title
Probing the geometry of copper and silver adatoms on magnetite: quantitative experiment versus theory