<div class="csl-bib-body">
<div class="csl-entry">Chajda, I., & Länger, H. (2018). Weakly orthomodular and dually weakly orthomodular posets. <i>Asian-European Journal of Mathematics</i>, <i>11</i>(02), 1850093. https://doi.org/10.1142/s1793557118500936</div>
</div>
-
dc.identifier.issn
1793-5571
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144925
-
dc.description.abstract
Orthomodular posets form an algebraic semantic for the logic of quantum mechanics. We show several methods how to construct orthomodular posets via a representation within the powerset of a given set. Further, we generalize this concept to the concept of weakly orthomodular and dually weakly orthomodular posets where the complementation need not be antitone or an involution. We show several interesting examples of such posets and prove which intervals of these posets are weakly orthomodular or dually weakly orthomodular again. To every (dually) weakly orthomodular poset can be assigned an algebra with total operations, a so-called (dually) weakly orthomodular 𝜆-lattice. We study properties of these 𝜆-lattices and show that the variety of these 𝜆-lattices has nice congruence properties.
en
dc.language.iso
en
-
dc.publisher
World Scientific Publishing
-
dc.relation.ispartof
Asian-European Journal of Mathematics
-
dc.subject
General Mathematics
en
dc.title
Weakly orthomodular and dually weakly orthomodular posets
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1850093
-
dc.type.category
Original Research Article
-
tuw.container.volume
11
-
tuw.container.issue
02
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Asian-European Journal of Mathematics
-
tuw.publication.orgunit
E104-01 - Forschungsbereich Algebra
-
tuw.publisher.doi
10.1142/s1793557118500936
-
dc.identifier.eissn
1793-7183
-
dc.description.numberOfPages
18
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie