<div class="csl-bib-body">
<div class="csl-entry">Gruber, A., Crow, W. T., & Dorigo, W. A. (2018). Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain. <i>Water Resources Research</i>, <i>54</i>(2), 1353–1367. https://doi.org/10.1002/2017wr021277</div>
</div>
-
dc.identifier.issn
0043-1397
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/144949
-
dc.description.abstract
Growth in the availability of near‐real‐time soil moisture observations from ground‐based networks has spurred interest in the assimilation of these observations into land surface models via a two‐dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model‐based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two‐dimensional (2‐D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground‐based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2‐D system is compared to that obtained from the 1‐D assimilation of remote sensing retrievals to assess the value of ground‐based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite‐based surface soil moisture retrievals.
en
dc.language.iso
en
-
dc.publisher
AMER GEOPHYSICAL UNION
-
dc.relation.ispartof
Water Resources Research
-
dc.subject
Water Science and Technology
-
dc.title
Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
1353
-
dc.description.endpage
1367
-
dc.type.category
Original Research Article
-
tuw.container.volume
54
-
tuw.container.issue
2
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.id
E4
-
tuw.researchTopic.name
Modelling and Simulation
-
tuw.researchTopic.name
Environmental Monitoring and Climate Adaptation
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Water Resources Research
-
tuw.publication.orgunit
E120-01-2 - Forschungsgruppe Klima- und Umweltfernerkundung
-
tuw.publisher.doi
10.1002/2017wr021277
-
dc.identifier.eissn
1944-7973
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0002-3280-7023
-
tuw.author.orcid
0000-0002-8217-261X
-
tuw.author.orcid
0000-0001-8054-7572
-
wb.sci
true
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch.oefos
2074
-
wb.facultyfocus
Geoinformationstechnik
de
wb.facultyfocus
Geoinformation Technology
en
wb.facultyfocus.faculty
E100
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung
-
crisitem.author.dept
E120-08 - Forschungsbereich Klima- und Umweltfernerkundung