<div class="csl-bib-body">
<div class="csl-entry">Polatsek, P., Waldner, M., Viola, I., Kapec, P., & Benesova, W. (2018). Exploring visual attention and saliency modeling for task-based visual analysis. <i>Computers and Graphics</i>, <i>72</i>, 26–38. https://doi.org/10.1016/j.cag.2018.01.010</div>
</div>
-
dc.identifier.issn
0097-8493
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/145100
-
dc.description.abstract
Memory, visual attention and perception play a critical role in the design of visualizations. The way users observe a visualization is affected by salient stimuli in a scene as well as by domain knowledge, interest, and the task. While recent saliency models manage to predict the users' visual attention in visualizations during exploratory analysis, there is little evidence how much influence bottom-up saliency has on task-based visual analysis. Therefore, we performed an eye-tracking study with 47 users to determine the users' path of attention when solving three low-level analytical tasks using 30 different charts from the MASSVIS database [1]. We also compared our task-based eye tracking data to the data from the original memorability experiment by Borkin et al. [2]. We found that solving a task leads to more consistent viewing patterns compared to exploratory visual analysis. However, bottom-up saliency of a visualization has negligible influence on users' fixations and task efficiency when performing a low-level analytical task. Also, the efficiency of visual search for an extreme target data point is barely influenced by the target's bottom-up saliency. Therefore, we conclude that bottom-up saliency models tailored towards information visualization are not suitable for predicting visual attention when performing task-based visual analysis. We discuss potential reasons and suggest extensions to visual attention models to better account for task-based visual analysis.
en
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Computers and Graphics
-
dc.subject
Human-Computer Interaction
-
dc.subject
General Engineering
-
dc.subject
Computer Graphics and Computer-Aided Design
-
dc.subject
Information visualization
-
dc.subject
Eye-tracking experiment
-
dc.subject
Saliency
-
dc.subject
Visual attention
-
dc.subject
Low-level analytical tasks
-
dc.title
Exploring visual attention and saliency modeling for task-based visual analysis
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
26
-
dc.description.endpage
38
-
dc.type.category
Original Research Article
-
tuw.container.volume
72
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Computers and Graphics
-
tuw.publication.orgunit
E193-02 - Forschungsbereich Computer Graphics
-
tuw.publisher.doi
10.1016/j.cag.2018.01.010
-
dc.identifier.eissn
1873-7684
-
dc.description.numberOfPages
13
-
tuw.author.orcid
0000-0003-4248-6574
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
de
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
en
wb.facultyfocus.faculty
E180
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.dept
E193-02 - Forschungsbereich Computer Graphics
-
crisitem.author.orcid
0000-0003-1387-5132
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology