<div class="csl-bib-body">
<div class="csl-entry">Lingitz, L., Gallina, V., Ansari, F., Gyulai, D., Pfeiffer, A., Sihn, W., & Monostori, L. (2018). Lead Time Prediction using Machine Learning Algorithms: A Case Study by a Semiconductor Manufacturer. In L. Wang (Ed.), <i>51st CIRP Conference on Manufacturing Systems</i> (pp. 1051–1056). Elsevier BV. https://doi.org/10.1016/j.procir.2018.03.148</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/145144
-
dc.description.abstract
The accurate prediction of manufacturing lead times (LT) significantly influences the quality and efficiency of production planning and scheduling (PPS). Traditional planning and control methods mostly calculate average lead times, derived from historical data. This often results in the deficiency of PPS, as production planners cannot consider the variability of LT, affected by multiple criteria in today's complex manufacturing environment. In case of semiconductor manufacturing, sophisticated LT prediction methods are needed, due to complex operations, mass production, multiple routings and demands to high process resource efficiency. To overcome these challenges, supervised machine learning (ML) approaches can be employed for LT prediction, relying on historical production data obtained from manufacturing execution systems (MES). The paper examines the use of state-of-the-art regression algorithms and their effect on increasing accuracy of LT prediction. Through a real industrial case study, a multi-criteria comparison of the methods is provided, and conclusions are drawn about the selection of features and applicability of the methods in the semiconductor industry.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Procedia CIRP
-
dc.subject
General Materials Science
-
dc.subject
machine learning
-
dc.subject
prediction
-
dc.subject
comparison
-
dc.subject
Lead time
-
dc.subject
regression methods
-
dc.subject
features
-
dc.title
Lead Time Prediction using Machine Learning Algorithms: A Case Study by a Semiconductor Manufacturer
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
51st CIRP Conference on Manufacturing Systems
-
dc.relation.issn
2212-8271
-
dc.description.startpage
1051
-
dc.description.endpage
1056
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
51st CIRP Conference on Manufacturing Systems
-
tuw.container.volume
72
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Procedia CIRP
-
tuw.relation.publisher
Elsevier BV
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.id
I6a
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.name
Digital Transformation in Manufacturing
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E330-02-1 - Forschungsgruppe Smart and Knowledge Based Maintenance
-
tuw.publication.orgunit
E330-02 - Forschungsbereich Betriebstechnik, Systemplanung und Facility Management
-
tuw.publisher.doi
10.1016/j.procir.2018.03.148
-
dc.description.numberOfPages
6
-
tuw.event.name
51st CIRP Conference on Manufacturing Systems
en
tuw.event.startdate
16-05-2018
-
tuw.event.enddate
18-05-2018
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Stockholm
-
tuw.event.country
SE
-
tuw.event.presenter
Lingitz, Lukas
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
5020
-
wb.facultyfocus
Produktionssysteme und Industrial Management
de
wb.facultyfocus
Produktionssysteme und Industrial Management
en
wb.facultyfocus.faculty
E300
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.dept
E330-06 - Forschungsbereich Produktions- und Instandhaltungsmanagement
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.orcid
0000-0002-2705-0396
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften
-
crisitem.author.parentorg
E330 - Institut für Managementwissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften