<div class="csl-bib-body">
<div class="csl-entry">Lackner, P., Hulva, J., Köck, E.-M., Mayr-Schmölzer, W., Choi, J. I. J., Penner, S., Diebold, U., Mittendorfer, F., Redinger, J., Klötzer, B., Parkinson, G. S., & Schmid, M. (2018). Water adsorption at zirconia: from the ZrO₂(111)/Pt₃Zr(0001) model system to powder samples. <i>Journal of Materials Chemistry A: Materials for Energy and Sustainability</i>, <i>6</i>(36), 17587–17601. https://doi.org/10.1039/c8ta04137g</div>
</div>
-
dc.identifier.issn
2050-7488
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/145274
-
dc.description.abstract
We present a comprehensive study of water adsorption and desorption on an ultrathin trilayer zirconia film using temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), as well as scanning tunneling microscopy (STM) at different temperatures. The saturation coverage is one H2O per surface Zr atom, with about 12% dissociation. The monolayer TPD peak (180 K, desorption barrier 0.57 +- 0.04 eV) has a tail towards higher temperatures, caused by recombinative desorption from defect sites with dissociated water. STM shows that the defects with the strongest H2O adsorption are found above subsurface dislocations. Additional defect sites are created by multiple water adsorption/desorption cycles; these water-induced changes were also probed by CO2 TPD. Nevertheless, the defect density is much smaller than in previous studies of H2O/ZrO2. To validate our model system, transmission Fourier-transform infrared absorption spectroscopy (FTIR) studies at near-ambient pressures were carried out on monoclinic zirconia powder, showing comparable adsorption energies as TPD on the ultrathin film. The results are also compared with density functional theory (DFT) calculations, which suggest that sites with strong H2O adsorption contain twofold-coordinated oxygen.
en
dc.language.iso
en
-
dc.relation.ispartof
Journal of Materials Chemistry A: materials for energy and sustainability
-
dc.subject
General Materials Science
en
dc.subject
General Chemistry
en
dc.subject
Renewable Energy, Sustainability and the Environment
en
dc.title
Water adsorption at zirconia: from the ZrO₂(111)/Pt₃Zr(0001) model system to powder samples
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
17587
-
dc.description.endpage
17601
-
dc.type.category
Original Research Article
-
tuw.container.volume
6
-
tuw.container.issue
36
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Journal of Materials Chemistry A: materials for energy and sustainability
-
tuw.publication.orgunit
E134-01 - Forschungsbereich Applied and Computational Physics
-
tuw.publication.orgunit
E134-05 - Forschungsbereich Surface Physics
-
tuw.publisher.doi
10.1039/c8ta04137g
-
dc.date.onlinefirst
2018-08-31
-
dc.identifier.eissn
2050-7496
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0002-3481-7911
-
tuw.author.orcid
0000-0002-4642-8315
-
tuw.author.orcid
0000-0003-4834-9458
-
tuw.author.orcid
0000-0002-2561-5816
-
tuw.author.orcid
0000-0003-0319-5256
-
tuw.author.orcid
0000-0002-5073-9191
-
tuw.author.orcid
0000-0003-3373-9357
-
wb.sci
true
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Physikalische Technologie
de
wb.facultyfocus
Physical Technology
en
wb.facultyfocus.faculty
E130
-
item.fulltext
no Fulltext
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E134-05 - Forschungsbereich Surface Physics
-
crisitem.author.dept
E134-05 - Forschungsbereich Surface Physics
-
crisitem.author.dept
E057-02 - Fachbereich Universitäre Serviceeinrichtung für Transmissions- Elektronenmikroskopie